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Graph-based deep learning approach for high-throughput
protein-DNA interaction scoring
Yi-hao Zhao1, Ying Wang1, Chao Shen2, De-jun Jiang3, Shu-kai Gu1, Hui-feng Zhao1, Zi-yi You1, Ting-jun Hou1,4✉ and Yu Kang1,4✉

Accurately quantifying protein-DNA interactions (PDIs) is critical for understanding biological processes and facilitating drug design.
However, the inherent flexibility of nucleic acids limits the availability of experimentally determined structures of PDI complexes,
posing a significant challenge for training reliable scoring functions (SFs). To address this, we developed PDIScore, a novel deep
learning-based SF for PDI prediction. PDIScore utilizes a comprehensive graph representation to capture nucleotide flexibility,
employs a scalable GraphGPS architecture with BigBird linear global attention to handle large interaction interfaces, and leverages
Mixture Density Networks (MDNs) to model residue-nucleotide distance distributions. PDIScore was trained on a self-collected
dataset of ~7000 protein-nucleic acid complex structures and validated on three rigorous test sets for evaluating its screening,
docking, and ranking capabilities. The results illustrated that PDIScore significantly outperformed existing methods: it achieved the
best screening power on the screening set (e.g., EF1%= 14.13, AUROC= 0.82 using AlphaFold3 structures), the highest docking
success rate on the docking set (48.94% top1), and superior ranking capability on the ranking set (PCC= 0.50). Case studies
demonstrated PDIScore’s ability to elucidate biological mechanisms (e.g., adenovirus transcription, SOCS1 regulation) and its
interpretability at the nucleotide level for identifying key interaction sites. PDIScore represents a robust, generalizable tool with
significant potential for advancing PDI-related research and therapeutic design.
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INTRODUCTION
Protein-DNA interactions (PDIs) are fundamental to many biolo-
gical processes, including DNA replication, RNA transcription, gene
repair, and gene regulation [1, 2]. PDIs are also related to various
diseases, such as inflammation, cancer and Alzheimer’s disease
[3–5]. Understanding these interactions offers valuable insights
into the mechanisms of life, disease pathways, and drug discovery
[6–8]. The former two are typically associated with transcription
factors (TFs), such as TATA-box-binding protein (TBP) and early
growth response protein 1 (Egr1), which specifically recognize
DNA sequences to regulate the transcription of the associated
genes [9, 10]. For instance, during the adenovirus replication cycle,
TBP binds to the TATA box of the adenovirus major late promoter
(AdMLP), thereby activating the transcription of adenovirus RNA
[11]. With respect to disease pathways, Egr1 regulates the
transcription of suppressor of cytokine signaling-1 (SOCS1), the
dysregulation of which can lead to immune defects, including
excessive inflammation, autoimmune conditions, and malignan-
cies [12, 13]. As for PDI-related drugs, there are protein-targeted
therapies, such as DNA aptamer [14, 15], and DNA-targeted drugs,
such as cyclic peptides [16]. Furthermore, synthetic DNAs
engineered for high affinity and specificity to proteins are being

developed as drugs, diagnostic tools, and antagonists to elucidate
the role of specific proteins [17].
Quantitative analysis of PDIs in high-throughput studies is

essential for the rational design of synthetic DNA. However,
experimental methods such as electrophoretic mobility shift assay
[18], isothermal titration calorimetry [19], and surface plasmon
resonance [20] face significant challenges in measuring protein-
DNA binding affinity quickly and accurately. These challenges arise
from the structural end-effects of short DNA and the abundance of
nonspecific binding sites of long DNA [18]. Moreover, these
methods are typically time-intensive and costly, especially when
applied to high-throughput experiments [21]. Therefore, there is a
passing need for computational methods that can rapidly
estimate protein-DNA binding, including both sequence-based
and structure-based methods. The inherent flexibility and diverse
conformations of nucleic acids complicate accurate binding
affinity predictions using sequence-based methods. Consequently,
structure-aware methods are generally expected to yield higher
prediction accuracy compared to sequence-based methods [22].
A number of structure-based computational scoring functions

(SFs) have been developed for predicting protein-DNA binding
affinity [21, 23–28]. However, the inherent flexibility of nucleic
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acids leads to a scarcity of experimentally determined structures
with known binding affinities, posing a significant challenge for
existing methods, which typically rely on datasets containing
fewer than 500 entries [29]. Traditional approaches, such as MM/
GBSA [25], FoldX [23, 24], and ref2015 and dna_gb in PyRosetta
[26], generally quantify PDIs as a weighted sum of multiple
empirical energy terms. The advent of machine learning (ML)
algorithms has facilitated the development of a pool of ML-based
SFs (MLSFs) that can learn directly from data, represented by
PreDBA [27], emPDBA [28], and SAMPDI-3D [21]. Although these
methods demonstrate impressive performance on their internal
datasets, the limited size of these datasets and the lack of external
validation or systematic evaluation may compromise their
reliability [29]. For example, the largest dataset of SAMPDI-3D
included 463 mutants for training [29]. Based on our evaluation,
most of these SFs struggle with ranking a series of known binders
(ranking power), and some can even hardly distinguish active
binders from non-binders or weakly active binders (screening
power).
The ability to identify native-like binding poses from incorrect ones

(docking power) is also an important criterion for evaluating a SF. The
aforementioned methods need complex structures for scoring, but the
flexibility of nucleic acids often limits the availability of crystal
structures, necessitating the use of docking techniques to predict
protein-DNA complex structures. Representative docking methods
include HDOCK [30], PyDockDNA [31], and HADDOCK [32, 33].
Meanwhile, artificial intelligence (AI)-based structure prediction meth-
ods like AlphaFold [34] have demonstrated remarkable success in
protein structure prediction, and its latest version, AlphaFold3 [35], can
even predict protein-DNA complexes directly from sequences. These
methods have internal SFs to rank and filter multiple docking poses.
The capability of SFs to distinguish native-like binding poses from
incorrect ones is crucial for accurate structure prediction and
subsequent binding affinity prediction.
To develop a more reliable SF, we curated an extensive dataset

of ~7000 protein-nucleic acid complex structures sourced from
Protein Data Bank (PDB) [36]. To the best of our knowledge, such a
large-scale structure dataset has never been reported, and it can
be served as a pioneering source for training predictive models,
thereby advancing the study of PDIs. To comprehensively evaluate
existing PDI SFs, we also compiled three validation sets, including
(1) a screening set that involves 5 systems and a total of ~28000
protein-DNA complexes with the binding affinities determined by
the same research group using the same experimental method
[37], (2) a published docking benchmark with 47 unbound
protein-DNA complex structures [38], and (3) a ranking set that
contains 9 systems and ~200 protein-DNA complexes, with
measured binding affinities that cover both protein mutations
and DNA mutations [21, 39–42]. Due to the known binding
affinities of each ligand in the screening set, it can also be utilized
to assess the ranking power. Relying on these datasets, we
presented a deep learning (DL)-based approach named PDIScore
for PDI prediction. Our model architecture comprises four primary
modules: graph representation, feature extraction, concatenation,
and mixture density network (MDN). Given the higher conforma-
tional flexibility of nucleic acids compared to proteins, we used a
wider array of structural descriptors (11 atom distances and 20
dihedral angles) into the graph representation. For feature
extraction, we used the general, powerful, scalable (GPS) graph
[43] with linear global attention provided by BigBird [44] to
replace the fully-connected graph transformer (GT) used in our
previous studies [45, 46]. This featurization strategy is scalable to
graphs with several thousand nodes, making it particularly
suitable for this study. Compared with protein-small molecule
interactions, PDIs typically have larger contact areas, which are
reflected in larger graphs with more nodes and edges during
feature extraction. The MDN modules are utilized to learn the
probability density distribution of the distance between each

residue and each nucleic acid. Overall, PDIScore is trained on the
structure dataset and rigorously tested on the screening, docking
and ranking sets, demonstrating its ability to achieve an improved
correlation with experimental measurements and distinguish
native-like structures from decoys. PDIScore also demonstrates
its utility as a rescoring tool for AlphaFold3, offering valuable
support for PDI-related drug design.

MATERIALS AND METHODS
Dataset preparation
A total of four datasets, i.e., structure dataset, screening set,
docking set, and ranking set, were curated in this study. The
structure dataset was used for model training, and its distribution
is shown in Fig. S1. The remaining three sets were used as the test
sets for model evaluation and are detailed in Fig. S2 and Table S1.
The structure dataset consisted of 7108 protein-nucleic acid

complex structures retrieved from PDB (before October 16, 2023).
Among them, 532 protein-DNA complexes were labeled with
affinity data from the PDBbind database (v2020) [47] to fine-tune
the model, forming the affinity dataset. As shown in Fig. S1, the
distribution of the structure dataset closely resembled that of the
affinity dataset. Approximately 86% of the complexes in the
structure dataset and about 97% of the complexes in the affinity
dataset contained fewer than 60 nucleotides. Both datasets shared
the same top four most prevalent protein types: transferase,
transcription, DNA binding protein, and hydrolase.
The screening set contained ~28,000 protein-DNA complexes

for five protein targets, including TBP, Ets1, Egr1, Max, and GR,
whose wild-type crystal structures bound with DNA had been
determined (PDB entries: 1QNE, 2NNY, 1P47, 1AN2, and 1R4R,
respectively). For each specific protein target, the binding affinities
of equal-length DNA sequences were measured by the same
research group using the same bioassay. The mutants with
unavailable crystal structures were either obtained by point
mutation from the corresponding wild type or predicted by
AlphaFold3. For point mutation, the reference crystal structures
were first mutated using Chimera [48] based on the DNA
sequence information, followed by the minimization of the whole
system using Rosetta [49]. For Alphafold3, the sequences of DNA
and protein were input to predict the corresponding structures. To
ensure a fair comparison with the SF embedded in AlphaFold3,
the predicted structures were not processed with energy
minimization. The top 1% DNAs ranked by experimental binding
data were regarded as the active ligands for a specific protein. The
others were regarded as the decoys. The major aim of this set was
to test whether the approach could enrich these ligands from the
entire library. Additionally, the binding preference for each DNA
between Egr1 and Max was available, which could be used as a
small-scale reverse screening test to estimate whether the
approach could reproduce these preferences.
The docking set was directly retrieved from a published non-

redundant protein-DNA docking benchmark, which contained 47
unbound-unbound test cases. The unbound structure was defined
as a conformation that existed in the absence of binding partners
or within a different complex. The unbound DNA structures were
generated using the program 3DNA [50] and the unbound protein
structures were determined by X-ray or NMR. The benchmark was
redundancy reduced using the program MMseqs2 [51], removing
the complexes whose sequences were >40% similar to those in
the structure dataset. Following this process, 41 complexes
remained, forming the de-redundant dataset.
The ranking set was employed to evaluate the capability of each

approach to capture changes in binding free energy (ΔΔG)
resulting from different mutations, covering both protein and DNA
mutations. We selected systems from the test sets of SAMPDI-3D,
each containing more than 15 mutation ΔΔG values. To ensure a
fair comparison and provide supplementary data, we also
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Fig. 1 The model architecture of PDIScore. a Each protein-nucleic acid complex is separated into protein and nucleic acid, which are then
fed to independent graphGPS layers at the residue (res) level and the nucleotide (nt) level, respectively. Each graphGPS layer primarily consists
of a GINE module and a BigBird module for updating graph representations. The final node representations of protein and nucleic acid are
concatenated and then input to an MDN to generate probability density distributions. These distributions are ultimately assembled into a
score which indicates the binding affinity of protein-nucleic acid complex. b In the graph representation, the node features of nucleic acids
comprise nucleotide types, self_distances, and dihedral_angles. c In the feature extraction, the node features are aggregated by the output of
BigBird module and GINE module, followed by the processing of Multilayer Perceptron (MLP) module.
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identified systems that were either entirely or partially absent from
the training sets of SAMPDI-3D, thus leaving nine proteins with
resolved DNA-bound crystal structures, including CEBPB, MafB,
ELK1, ETV5, ERG, Tral, CAP, PadR, and c-Fos-c-Jun (PDB entries:
1GU4, 2WTY, 1DUX, 4UNO, 4IRI, 2A0I, 1RUN, 5×11, and 1FOS,
respectively). The first five proteins involved DNA mutations, while
the remaining four involved protein mutations. The unknown
structures were also predicted by point mutation or AlphaFold3,
as mentioned above.

Graph representations
The model architecture of PDIScore is depicted in Fig. 1, which
consists of graph representation, feature extraction, concatena-
tion, and MDN modules. The graph representations of proteins
were referenced from our previous study, RTMScore, which had
demonstrated efficacy in predicting protein-small molecule
interactions [46]. The residues located within 10.0 Å radius around
the co-crystalized DNA were defined as the binding pocket, while
the other residues were deemed irrelevant to binding and thereby
removed from the structure. Each pocket was then represented as
an undirected graph (GP ¼ ðNP; EPÞ), with nodes representing the
residues in a pocket and edges representing the interactions
between any two residues with a minimum distance of less than
10.0 Å. The features of nodes were based on the residue level,
which was demonstrated to be effective in our previous study [46].
For edges, we considered the non-covalent interactions that
played important roles to maintain the secondary structures and
tertiary structures of the protein. The features of protein graph are
outlined in Table 1. Specifically, the node features included amino
acid type, self-distances, and dihedral angles for each residue, and
the edge features included bonding states, CA-to-CA distances,
center-to-center distances, and the maximum and minimum
distances between any two residues.
Similarly, the graph ðGNA ¼ ðNNA; ENAÞÞ for each nucleic acid was

constructed at the nucleotide level. In this graph, nodes represent
the nucleotides of the entire nucleic acid, and edges represent the
interactions between any two nucleotides whose minimum
distances are less than 10.0 Å. Table 2 summarizes the features
of each nucleic acid graph. The node features include the types,
self-distances, and dihedral angles of each nucleotide, whereas
the edge features include bonding states, C5’-to-C5’ distances,
center-to-center distances, and the maximum and minimum
distances between any two nucleotides. Due to the larger number
of atoms in nucleotides compared to residues, there are more
distances and dihedral angles to consider. In addition to standard
nucleotides, we also included three nonstandard nucleotides
present in the structure dataset. For the interatomic distances, we
calculated the distances between atomic pairs composed of
sugar-phosphate backbone atoms (O3’, C3’, C4’, C5’, O5’, P, C2’,
C1’, and O4’). To avoid excessive features while minimizing the
loss of structural information, we sampled the distances from the
top 10 crystal structures ranked by the number of nucleotides and
ignored the distances that were relatively evenly distributed
among the nucleotides, such as the minimum distance among all
interatomic distances (Fig. S3). When calculating dihedral angles,
the atom types varied a lot across different nucleobases. There-
fore, the features related to dihedral angles primarily involved
sugar-phosphate backbone atoms, with the exception of two
atoms from nucleobases (atoms N9 and C4 from purines A, G, I, or
atoms N1 and C2 from pyrimidines C, T, U). The features were
computed using the MDAnalysis package [52], and the graphs
were created with the Deep Graph Library (DGL) package [53].

Feature extraction
The protein and nucleic acid graphs shared the same model
architecture but employed independent feature extractors to trans-
form the features into their respective hidden representations. For a
graph with node features ni 2 R1 ´ dn for node i and edge features

eij 2 R1 ´ de for the edge between node i and its neighboring node j,
these features were first embedded into d-dimensional initial hidden
representations by linear transformations:

h0i ¼ niW
0
n þ b0n; e

0
ij ¼ eijW

0
e þ b0e (1)

where W0
n 2 Rdn ´ d; W0

e 2 Rde ´ d , and b0n, b0e 2 R1 ´ d are the
weights and biases of the linear layers, respectively; h0i and e0ij are
the node and edge features in the first hidden layer, respectively.
The output features were then updated through several layers

of graphGPS [43]. At each layer of graphGPS, the features were
updated by aggregating the output of a message-passing graph
neural networks (MPNN) layer and a global attention layer. The
MPNN layer operated by aggregating information from the
neighbors of a node and subsequently updating its feature
representation accordingly. On the other hand, the global
attention layer enabled nodes to consider all other nodes in a
graph. This architecture design was particularly vital for over-
coming the inherent limitations associated with traditional
MPNNs, such as over-smoothing and over-squashing. For con-
venience, in the subsequent sections, the linear transformations
were simplified as O:

OðiÞ ¼ iW þ b (2)

where W 2 Rdi ´ do and b 2 R1 ´ do are the weight and bias of the
linear layer, respectively; i 2 R1 ´ di is the input data; di and do are
the dimensions of input data and output data, respectively.
Now the BigBird operation of the lth layer could be described as

follows:

ATTNðhliÞ ¼
XA
a¼1

Softmax hliQa
� �

Hl
N ið ÞKa

� �T
� �

� Hl
N ið ÞVa (3)

ĥ
lþ1
Bi ¼ Ol

B1ðATTNðhliÞ þ hliÞ (4)

hlþ1
Bi ¼ Ol

B2ððReLUðĥ
lþ1
Bi ÞÞ þ ĥ

lþ1
Bi

(5)

where Hl ¼ hl1; ¼ ¼ ; hlN
� 	

is the set of hli , so Hl 2 RN ´ d ; N ið Þ
denotes the out-neighbors set of node i; Qa , Ka 2 Rd ´m and Va 2
Rd ´ d are the ath weights from A-sets of Query, Key and Value
weight matrices, respectively; Softmax represents the softmax
operation; ReLU is a type of nonlinear activation function; Ol

B1 and
Ol
B2 are two linear transformations with W 2 Rd ´ d and b 2 R1 ´ d

in the lth layer of BigBird; ĥ
lþ1
Bi and hlþ1

Bi are the intermediate and
final node representations in the (l+1)th layer of BigBird,
respectively. In the lth layer of BigBird, the hidden representation
hli was initially processed through an attention mechanism based
on multi-head attention, as shown in Eq. (3). Then the output was
used to calculate the representation for the next layer hlþ1

Bi by a
two-layer fully connected network.
When the BigBird model was used for global attention layer in

graphGPS, the graph isomorphism network with edges (GINE) [54]
was employed for MPNN layer. The GINE operation of the lth layer
could be described as follows:

ĥ
lþ1
Gi ¼

X
j2N ið Þ

ReLU hlj þ elji
� �

þ hli (6)

hlþ1
Gi ¼ Ol

G2ReLUðOl
G1ĥ

lþ1
Gi Þ (7)

where ĥ
lþ1
Gi and hlþ1

Gi are the intermediate and final node
representations in the (l+1)th layer of BigBird, respectively; Ol

G1
and Ol

G2 are two linear transformations with W 2 Rd ´ d and b 2
R1 ´ d in the lth layer of GINE. In the lth layer of GINE module, the
hidden representation hli was initially processed through an
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aggregation function, which considered the features of neighbor-
ing nodes and the attributions of the edges connecting these
nodes, as shown in Eq. (6). Then the output of aggregation
function was used to calculate the representation for the next
layer hlþ1

Gi by two linear transformations. The edge features elij were
used but not updated in GINE layers, also it should be noted that
the BigBird layers did not employ or update edge features, which
meant elþ1

ij ¼ elij .
In graphGPS, the features were updated by aggregating the

output of the BigBird module and GINE module. The graphGPS
operation of the lth layer could be described as follows:

ĥ
lþ1
i ¼ BatchNorm Dropout ĥ

lþ1
Bi

� �
þ hli

� �

þBatchNormðDropout ĥ
lþ1
Gi

� �
þ hliÞ

(8)

hlþ1
i ¼ DropoutðOl

GPS2ðDropoutðReLUðOl
GPS1ĥ

lþ1
i ÞÞÞÞ þ ĥ

lþ1
i

(9)

elþ1
ij ¼ elij (10)

where ĥ
lþ1
i and hlþ1

i are the intermediate and final node
representations in the (l+1)th layer of graphGPS, respectively;
Ol
GPS1 and Ol

GPS2 are two linear transformations with W 2 Rd ´ d

and b 2 R1 ´ d in the lth layer of graphGPS; Dropout denotes the
dropout operation; BatchNorm denotes the batch normalization

operation. The node features of BigBird ĥ
lþ1
Bi and GINE ĥ

lþ1
Gi were

both processed through the dropout and batch normalization
operations, and subsequently aggregated to form the intermedi-

ate representations ĥ
lþ1
i , which was then used to calculate the

final node representations hlþ1
i by two linear transformations with

the dropout operations. As for the edge features, they were only
passed to the GINE module and were not updated within it.
Therefore, the edge representations remained unchanged during
the graphGPS operations, as shown in Eq. (10). The outputs hlþ1

i

and elþ1
ij were then fed to the next graphGPS layer until the final

graphGPS layer, when the output was input into the feature
concatenation module.

Feature concatenation and MDN
In the feature concatenation module, the extracted node
representations for protein and nucleic acid were concatenated
in pairs to form the input for MDN. The related operations could
be described as follows:

hx;y ¼ Dropout ELU BatchNorm OMDN1Cat hPx ; h
NA
y

h i� �� �� �� �
(11)

μx;y ¼ ELU OMDN2hx;y
� �þ 1 (12)

σx;y ¼ ELU OMDN3hx;y
� �þ 1:1 (13)

πx;y ¼ Softmax OMDN4hx;y
� �

(14)

Table 2. Node and edge features of nucleic acid graphs.

Features Size Description

Nodes

Type 12 nucleotide type ([“A”, “G”, “C”, “U”, “I”, “N”, “DA”, “DG”, DC”, “DT”, “DU”, “DI”]) with one hot encoding

Self_distance 11 maximum distance within any atomic pair, distances between the atomic pairs O3’-C5’, O3’-O5’, O3’-P, C3’-O5’, C3’-P, C4’-P,
O3’-C1’, O3’-O4’, C5’-C1’, C5’-C2’ (multiplied by 0.1)

Dihedral_angle 20 dihedral angles O5’(b)-P(b)-O3’-C3’, P(b)-O3’-C3’-C4’, O3’-C3’-C4’-C5’, C3’-C4’-C5’-O5’, C4’-C5’-O5’-P, C5’-O5’-P-O3’(f ), P(f )-O3’-
C3’-C2’, O3’-C3’-C2’-C1’, C3’-C2’-C1’-O4’, C2’-C1’-O4’-C4’, C1’-O4’-C4’-C5’, O4’-C4’-C5’-O5’, O3’-C3’-C4’-O4’, C5’-C4’-C3’-C2’, C3’-
C4’-O4’-C1’, C4’-C3’-C2’-C1’, C4’-O4’-C1’-N9(N1), C3’-C2’-C1’-N9(N1), O4’-C1’-N9(N1)-C4(C2), C2’-C1’-N9(N1)-C4(C2)
(multiplied by 0.01)

Edges

Whether_connected 1 whether two nucleotides are connected

C5’_distance 1 distance between the atoms C5’ of two nucleotides (multiplied by 0.1)

Center_distance 1 distance between the centers of two nucleotides (multiplied by 0.1)

Maximum_distance 2 maximum and minimum distances between two nucleotides (multiplied by 0.1)

Table 1. Node and edge features of protein graphs.

Features Size Description

Nodes

Type 32 residue type ([“GLY”, “ALA”, “VAL”, “LEU”, “ILE”, “PRO”, “PHE”, “TYR”, “TRP”, “SER”, “THR”, “CYS”, “MET”, “ASN”, “GLN”, “ASP”, “GLU”,
“LYS”, “ARG”, “HIS”, “MSE”, “CSO”, “PTR”, “TPO”, “KCX”, “CSD”, “SEP”, “MLY”, “PCA”, “LLP”, “metal”, “other”]) with one hot encoding

Self_distance 5 maximum and minimum distances within any atomic pair, distances between the atomic pairs CA-O, O-N, C-N (multiplied
by 0.1)

Dihedral_angle 4 dihedral angles phi, psi, omega, and chi1 (multiplied by 0.01)

Edges

Whether_connected 1 whether two residues are connected

CA_distance 1 distance between the CA atoms of two residues (multiplied by 0.1)

Center_distance 1 distance between the centers of two residues (multiplied by 0.1)

Maximum_distance 2 maximum and minimum distances between two residues (multiplied by 0.1)
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where hPx and hNAy are the extracted node representations for
protein and nucleic acid, respectively; OMDN1 is the linear
transformation with W 2 R2d ´ dx;y and b 2 R1 ´ dx;y ; OMDN2, OMDN3,
and OMDN4 are three linear transformations with W 2 Rdx;y ´ dg and
b 2 R1 ´ dg ; Cat represents the concatenation operation; Softmax
represents the softmax operation; ELU is a type of activation
function; the averages μx;y , standard deviations σx;y , and mixing
coefficients πx;y are the three components that determine the
probability density distribution of the distance between protein
node x and nucleic acid node y. The probability density
distributions of the distances could be learned from the
concatenated features within the MDN.

Model training
Following the parameterization strategy in our previous study [45],
we trained the model with two steps: normal training and fine-
tuning. During the initial training phase, α was set to 0, and the
prepared structure set was randomly divided into two subsets: a
training set of 6508 complexes and a validation set of 600
complexes. In the subsequent fine-tuning phase, α was adjusted
to 0.5, and the affinity dataset was also randomly split into a
training set of 482 complexes and a validation set of 50.
The loss function was defined as follows:

L ¼ LMDN þ 0:001 ´ ðLnt þ LbtÞ þ αLPCC (15)

LMDN ¼ � log P dx;y jhPx ; hNAy
� �

¼ � log
Xdg
n¼1

πx;y;nN dx;y jμx;y;n; σx;y;n

� �

(16)

Lnt ¼
XY
y¼1

Ent Otype1h
NA
y ;NNA

y;type

� �
(17)

Lbt ¼
XY
yi¼1

XY
yj2N yið Þ

Ent Otype2Cat hNAyi ; h
NA
yj

� �
; ENAyij;type

� �
(18)

LPCC ¼ CorðBAcomp; BAexptÞ (19)

BAcomp ¼
XX
x¼1

XY
y¼1

log P dx;y jhPx ; hNAy
� �

(20)

where the total loss L is composed of MDN loss LMDN, cross-
entropy losses Lnt and Lbt , and correlation loss LPCC. Here, α is the
weight of LPCC, dx;y is the minimum distance between xth residue
and yth nucleotide, Otype1 is the linear transformation with W 2
Rd ´ dnt and b 2 R1 ´ dnt , Otype2 is the linear transformation with
W 2 R2d ´ dbt and b 2 R1 ´ dbt , NNA

y;type represents the type of yth
nucleotide, ENAyij;type represents the type of bond between yith
nucleotide and yjth nucleotide, Ent stands for the cross-entropy
operation, Cor represents the Pearson correlation coefficient (PCC)
operation, and BAcomp and BAexpt represent the computed and
experimental binding affinities, respectively. The MDN loss LMDN is
calculated by summing the negative log-likelihood values of all
potential residue-nucleotide pairs. The model’s capabilities to
predict nucleotide types and their bond types could be reflected
by the cross-entropy losses Lnt and Lbt , respectively. Lastly, the
PCC between the computed and experimental binding affinities of
a batch of protein-nucleic acid complexes was calculated and
shared as the correlation loss LPCC.

Model evaluation
The model, along with other SFs, were evaluated on the screening,
docking and ranking sets. In the screening set, the DNA ligand

pools of five protein targets were used for the forward screening
and ranking tasks. Among the five protein targets, two targets
shared the same DNA ligand pool, and the binding preferences of
each ligand were used for the reverse screening task. The forward
screening power was measured using the area under the receiver
operating characteristic curve (AUROC) and the enrichment factor
(EF). EF was calculated as the average percentage of true binders
among the top-scoring candidates (1%, 5%, or 10%). The reverse
screening power was measured using AUROC. Given the known
binding affinities of ligands in the screening set, the ranking
power was also measured using PCC and Spearman correlation
coefficient (SCC). As for the docking set, the docking power was
measured using the success rate (SR), defined as a prediction
being successful if at least one of the top-ranked poses had a root-
mean-square deviation (RMSD) value of less than 6.0 Å from the
native pose. Both DNA RMSD(D) and protein RMSD(P) were
required to satisfy the condition. The atom P from DNA and atom
CA from protein were used to calculate RMSD(D) and RMSD(P),
respectively. To enhance the breadth of our analysis, the ranking
set included four DNA targets alongside additional five protein
targets. The ranking power for these nine targets was also
evaluated using PCC and SCC.
In addition to PDIScore, several other SFs were included as the

baselines for comparison. In the screening set, we used three
classical SFs, including two version of PyRosetta (ref2015, dna_gb)
and FoldX, and two ML-based SFs (PreDBA and emPDBA) for point
mutation predictions, and used the internal SF of Alphafold3,
PyRosetta (ref2015, dna_gb), and FoldX to re-score the structures
obtained through Alphafold3. In the docking set, we utilized three
docking methods: HDOCK, PyDockDNA, HADDOCK, along with the
AI-based method AlphaFold3, as pose prediction baselines. Of note,
AlphaFold3 was limited to 5 predictions and pyDockDNA to 100,
while the other approaches could output more than 100 predictions.
Considering that a number of 5 might be too smaller for certain
programs, except AlphaFold3 that generated only 5 predictions, the
number of predicted docking poses for other programs was
uniformly set to 100 with all the other default parameter settings.
In HADDOCK, residues or nucleotides with a minimum distance of
less than 10.0 Å from their binding partner were defined as active
residues or nucleotides. Additionally, three classical SFs, including
two versions of PyRosetta (ref2015 and dna_gb) and FoldX, were
employed as the baselines for pose rescoring. In the ranking set, five
classical SFs were used for point mutation predictions, including
MM/GBSA based on two different force fields (bsc1 and OL21), two
versions of PyRosetta (ref2015, dna_gb), FoldX, and one MLSF
(SAMPDI-3D), while four approaches, i.e., the internal SF of
Alphafold3, PyRosetta (ref2015 and dna_gb), and FoldX, were
employed for Alphafold3 predictions.

RESULTS AND DISCUSSION
PDIScore achieves the best performance on the screening set
In the screening task, the DNA ligand pools of five protein targets
were used to test whether the approach could enrich these
ligands from the entire library. Additionally, the binding pre-
ference for each DNA between Egr1 and Max was available, which
could be used as a small-scale reverse screening test to estimate
whether the approach could reproduce these preferences. In this
study, forward screening refers to screening DNAs against given
protein targets, whereas reverse screening involves screening
proteins for given DNA targets. For forward screening, the average
metrics were calculated across five protein targets, each with
varying numbers of DNA ligands. Maintaining a 1:99 ratio of active
ligands to decoys for each target system, consistent with the
typical small-molecule screening datasets [55], we evaluated the
performance of PDIScore. Either point mutation or alphafold3 was
used to predict the complex structures for those mutants with
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unavailable crystal structures. When using point mutation, as
shown in Table 3, our model achieved better performance
(EF5%= 4.26, AUROC= 0.71) than all baseline methods (e.g.,
FoldX: EF5%= 3.71, AUROC= 0.60), highlighting its enhanced
capability to discriminate the active ligands from a large pole of
inactive or weakly active ligands for a specific target. Out of the
five protein targets, the DNA ligand pools for Max and Egr1 were
identical. Given the known binding preferences of these DNA
ligands between Max and Egr1, these targets were also suitable
for reverse screening. Among the DNA ligands, 307 had a stronger
binding affinity toward Max, while 1419 preferred Egr1. The
AUROC values for reverse screening are shown in Table 3 and
Fig. 2. PDIScore achieved the highest AUROC value (0.88), better
than FoldX (0.85) and PyRosetta (0.80), demonstrating its potential
to discriminate both active DNAs based on specific proteins and
active proteins based on specific DNAs. Besides the screening
power, we also calculated the linear correlation between the
predicted and experimentally measured binding affinities, shown
in Table 3 and Table S2. PDIScore achieved the top performance
with a PCC value of 0.49 and an SCC value of 0.44, whereas the
second-ranked PyRosetta achieved a PCC value of 0.31 and an SCC
value of 0.33. The leading metric values indicated that PDIScore
could serve as a potential tool for PDI-related screening.
The latest version of AlphaFold, AlphaFold3, had been updated

to predict protein-DNA complexes. Here, we evaluated the
screening power based on the AlphaFold3 predictions on this
screening set (Table 3 and Table S3). The internal SF of AlphaFold3
(EF5%= 2.35, AUROC= 0.67) exhibited comparable performance
to PyRosetta#ref2015 (EF5%= 2.37, AUROC= 0.58), PyRosetta#d-
na_gb (EF5%= 3.07, AUROC= 0.59), and FoldX (EF5%= 3.71,
AUROC= 0.60), but fell short of PDIScore (EF5%= 4.26, AUROC=
0.71). These metric values were based on the structures predicted
by point mutation. To ensure a fair comparison, the four SFs
(PyRosetta#ref2015, PyRosetta#dna_gb, FoldX, and PDIScore) were
also applied to the structures predicted by AlphaFold3. All these
SFs improved the metric values, with PDIScore delivering the best
results (EF5%= 8.15, AUROC= 0.82). Additionally, PDIScore
demonstrated the top performance with a PCC value of 0.65
and an SCC value of 0.62 based on the AlphaFold3 predictions
(Table 3). The enhanced performance indicates that PDIScore

could serve as a reliable rescoring tool for AlphaFold3 in PDI-
related screening.
The metric values of PDIScore based on the AlphaFold3

predictions were higher than those based on the point mutation
predictions. Therefore, we compared the accuracy between the
AlphaFold3 and point mutation predictions for three cases (Fig.
S4) from the TBP target with crystal structures (PDB IDs: 1QNB,
1QN3, and 6UEP). For point mutation, the RMSD(D) of 6UEP
(1.07 Å) was higher than those of 1QNB (0.34 Å) and 1QN3 (0.33 Å),
potentially due to an unmatched base pair (C-C) in 6UEP.
According to the complementary base pairing principle, matched
base pairs (A-T and C-G) maintained a constant width in the DNA
double helix, while unmatched base pairs caused deviations from
this uniform width. In point mutation, when mutating DNA
structures using Chimera [48], the nucleotide base was replaced
by the specified type while the backbone remained unchanged.
However, unmatched base pairs may cause backbone variations,
which could not be predicted by Chimera [48]. This issue was
alleviated using AlphaFold3, achieving an RMSD(D) of 0.30 Å for
6UEP. Similarly, for the other matched cases, AlphaFold3 predic-
tions exhibited lower RMSD(D) values: 0.20 Å for 1QNB and 0.27 Å
for 1QN3, compared to point mutation predictions. We hypothe-
sized that AlphaFold3 might yield more accurate predictions for
the screening set than point mutation, thereby facilitating more
effective screening under the same SF.

PDIScore improves the success rates on the docking set
The tested methods relied on crystal structures, which were not
always accessible. To solve this issue, some structure prediction
methods were proposed and their performance was assessed on
the unbound protein-DNA docking benchmark in this study. Up to
100 predictions were set to be generated by those docking
methods for a single task, while AlphaFold3 could only provide 5
predictions through an online service. A docking was considered
successful if at least one of the top-ranked predictions exhibited
RMSD values below 6.0 Å for both the DNA and the protein,
relative to their native poses. For comparison, the success rates of
the top 1 and top 5 predictions are shown in Table 4. Among the
three docking methods, HADDOCK achieved the highest top
1 success rate (14.89%) and top 5 success rate (40.43%). Among all
structure prediction methods, AlphaFold3 achieved the highest
top 1 success rate (42.55%) and top 5 success rate (48.94%),
showing its strong modeling capability. It should be noted that
AlphaFold3’s training set included bound structures. However, the
performance evaluation of SFs might be more sensitive to the
similarity between the test set and the training set of the SFs
rather than to the structure prediction methods, such as
AlphaFold3. Therefore, we removed the samples from the docking
benchmark with sequences that were >40% similar to those in the
training set. We then aggregated the predictions from HADDOCK
and AlphaFold3 for re-scoring, and the re-scoring success rates of
SFs were also shown in Table 4. Compared to HADDOCK and
AlphaFold3, FoldX did not improve the success rate for either the
top 1 (27.66%) or the top 5 (36.17%) predictions. The use of
PyRosetta#dna_gb resulted in a decrease in the top 1 success rate
(38.30%) but an increase in the top 5 success rate (51.06%).
Employing PDIScore, however, improved both the top 1 (48.94%)
and top 5 (57.45%) success rates. It achieved the lowest RMSD(D)
(10.15 Å) for the top 1 prediction (Fig. 3b). When removing cases
similar to the training set (Table S4), PDIScore retained the highest
top 1 (51.22%) and top 5 (58.54%) success rates, demonstrating
that the superior docking power of PDIScore was built on its
generalization capability.
In Fig. 3, we presented two cases (PDB IDs: 1TRO and 1DIZ) to

explain why PDIScore could improve success rates. The RMSD
between prediction and crystal structure was calculated as the
metric with a prior alignment between the predicted and crystal
structures. Both RMSD(D) and RMSD(P) < 6 Å were considered

Table 3. Screening and ranking powers of SFs on the screening set.

Methods Screening Ranking

EF(↑) AUROC(↑) PCC(↑) SCC(↑)

EF1% EF5% Forward Reverse

Point Mutation

PyRosetta#ref2015 6.27 2.37 0.58 0.79 0.31 0.34

PyRosetta#dna_gb 5.64 3.07 0.59 0.80 0.31 0.33

FoldX 0.31 3.71 0.60 0.85 0.30 0.26

PreDBA 0.00 1.92 0.38 0.37 −0.12 −0.08

emPDBA 1.13 0.42 0.60 0.66 0.18 0.22

PDIScore 6.89 4.26 0.71 0.88 0.49 0.44

AlphaFold3

AlphaFold3 1.13 2.35 0.67 0.72 0.28 0.33

PyRosetta#ref2015 3.33 4.15 0.78 0.62 0.30 0.47

PyRosetta#dna_gb 7.50 5.68 0.80 0.62 0.31 0.49

FoldX 7.62 4.80 0.81 0.72 0.45 0.52

PDIScore 14.13 8.15 0.82 0.84 0.65 0.62

Values in bold represent the optimal performances for each metric, and the
same applies to all subsequent tables.
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successful. The lowest RMSD model of the top 5 predictions is
shown in Fig. S5. For PDB 1TRO, the docking methods failed to
yield the accurate prediction, whereas AlphaFold3 could generate
native-like predictions (RMSD= 1.46 Å). In this case, the HAD-
DOCK predictions could be regarded as decoys in the mixed
prediction pool, while PDIScore successfully ranked AlphaFold3
predictions within the top 5, demonstrating its ability to
distinguish native-like predictions from decoys. Regarding PDB
1DIZ, AlphaFold3 was unable to obtain the accurate prediction,
resulting in a prediction with separate DNA and protein
(RMSD= 27.10 Å). The top 5 predictions from docking methods
also failed to meet the standard. However, PDIScore could
provide the successful model (RMSD= 5.05 Å), showing the
advantage of combining and re-scoring the results from different
structure prediction methods.

PDIScore retains the best performance on the ranking set
PDIScore excelled in the reverse screening to identify the binding
preferences between Egr1 and Max, showing its capability to
distinguish active proteins for specific DNA targets. Considering
the number of protein ligand was only 2 for each DNA target, we
expanded this to over 15 protein ligands. We also selected five
protein targets from a previously studied DNA mutant dataset
[21]. Both point mutation and alphafold3 were used to predict the
complex structures. When using point mutation, we introduced
three additional SFs, MM/GBSA#bsc1, MM/GBSA#OL21, and
SAMPDI-3D, while excluding two SFs, PreDBA and emPDBA,
compared to the screening set. In the screening set, MM/GBSA
was not tested due to its substantial computational demands
(Table S5), and SAMPDI-3D was not tested because it was only
applicable to single-point mutation. In the ranking set, PreDBA

Fig. 2 Screening and ranking powers of SFs on the screening set. Performances of SFs on the screening set based on point mutation (PM,
orange) predictions and AlphaFold3 (AF3, green) predictions. The screening powers are in terms of a EF1%, b EF5%, c, d AUROC of forward and
reverse screening, e PCC, and f SCC.
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and emPDBA were not involved because they struggled with
certain targets, yielding identical scores for different ligands. This
issue might be caused by the low weights assigned to nucleotide
types in the SFs of PreDBA and emPDBA. The PCC and SCC
between the predicted and experimentally measured binding
affinities were calculated as the evaluation metrics in the ranking
set.
As shown in Table 5 and Fig. 4. SAMPDI-3D showed acceptable

performance (PCC= 0.41, SCC= 0.37), but PDIScore stood out
with superior performance (PCC= 0.50, SCC= 0.48), demonstrat-
ing its robustness in ranking different protein mutants. The
dataset could be divided into five protein targets and four DNA

targets, with the corresponding metrics shown in Table S6–8. MM/
GBSA#bsc1 exhibited better performance on the DNA targets
(PCC= 0.32, SCC= 0.18) than on the protein targets (PCC=−0.14,
SCC=−0.18). Similarly, MM/GBSA#OL21 also showed superior
performance on the DNA targets (PCC= 0.31, SCC= 0.25)
compared to the protein targets (PCC= 0.14, SCC= 0.08). This
discrepancy may be attributed to the choice of force fields;
specifically, in MM/GBSA, the same protein force field (ff14SB) was
used, while different DNA force fields (bsc1 and OL21) were
applied. When calculating DDGs induced by protein mutations,
the DNA targets remained the same and so the change of the DNA
force field did not affect the final results (indicated by the identical
PCC values and similar SCC values). Protein-related interactions
were mainly modeled by the protein force field and so the effect
of protein mutations was determined by this protein force field.
The MM/GBSA results suggested that the protein force field was
acceptable but the DNA force fields were inadequate. Notably,
among the DNA force fields, OL21 outperformed bsc1 in this
assessment. On the contrary, PDIScore performed better on the
protein targets (PCC= 0.57, SCC= 0.58) than on the DNA targets
(PCC= 0.41, SCC= 0.35). If we removed the redundancy of the
training set through the sequence similarity for both proteins and
DNAs, 49% of DNAs and only 15% of proteins were retained,
indicating that the model learned a broader range of DNA
structural information than protein information during training,
potentially explaining why PDIScore was better at ranking the
DNA ligands for the protein targets.
For the ranking based on AlphaFold3 predictions, we also

evaluated the internal SF of AlphaFold3, PyRosetta#ref2015,

Table 4. Docking powers of SFs on the docking benchmark.

Methods Top1 SR(↑) Top5 SR(↑) RMSD(D)a(↓) RMSD(P)(↓)

HDOCK 0.00 12.77 20.52 2.09

PyDockDNA 2.13 14.89 17.69 1.70

HADDOCK 14.89 40.43 13.80 1.87

AlphaFold3 42.55 48.94 13.86 2.27

PyRosetta#ref2015 23.40 40.43 14.48 2.04

PyRosetta#dna_gb 38.30 51.06 11.79 1.41

FoldX 27.66 36.17 15.00 2.04

PDIScore 48.94 57.45 10.15 1.72

aThe units of RMSD(D) and RMSD(P) are both Å.

Fig. 3 Docking powers of SFs on the docking benchmark with two cases. a Docking power in terms of the top 1 and top 5 success rates of
the tested methods on the docking benchmark. The first four SFs are the internal SFs of the structure prediction methods (HDOCK,
PyDockDNA, HADDOCK, and AlphaFold3) tested with their corresponding prediction methods, while the others are external SFs tested
with AlphaFold3. b The average RMSDs for DNA and protein of the top 1 prediction. Performance of three methods in terms of the lowest
RMSD(D) model of the top 5 predictions, including two cases: c PDB 1TRO and d PDB 1DIZ. The native DNA structures are colored in red and
the predicted DNA structures are colored in green.
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PyRosetta#dna_gb, FoldX, and PDIScore. PDIScore achieved the
best performance (PCC= 0.37, SCC= 0.32), showing its potential
as an effective rescoring tool for AlphaFold3. However, for
PDIScore, the metric values based on AlphaFold3 predictions
were lower than those based on point mutation predictions, in
contrast to the trend observed in the screening set. Therefore, we

calculated the RMSD(D) between AlphaFold3 predictions and
crystal structures for each system (PDB IDs: 1QNE, 2NNY, 1P47,
1AN2, 1R4R, 1GU4, 2WTY, 1DUX, 4UNO, 4IRI, 2A0I, 1RUN, 5×11,
1FOS). On average, the RMSD(D) of the screening systems (0.61 Å)
was lower than that of the ranking systems (1.26 Å), suggesting
that AlphaFold3 produced more accurate predictions for the
screening set. As shown in Fig. S6, the systems with high RMSD(D)
tended to show low PCC. The systems with RMSD(D) ≤ 0.8 Å
exhibited an average PCC of 0.55, while those with RMSD(D) >
0.8 Å showed an average PCC of 0.32, highlighting the importance
of prediction accuracy in achieving reliable scoring performance.

Quantifying PDIs sheds light on the mechanisms of life and
disease pathways
According to the screening test, SFs for quantifying PDIs should be
beneficial to the discovery of PDI-related drugs. However, to our
knowledge, the lack of open-source or accessible relevant datasets
has hindered validation in this area. To show the importance of PDI
predictions, we presented two examples related to the mechanisms
of life and disease pathways. The first case occurs in the adenovirus
infection cycle, where AdMLP is essential for gene transcription. The
TATA box within AdMLP serves as the TBP binding site, and its
mutants cause changes in transcriptional activity [56]. Using the
wild-type (wt) box as the template, a mutation from TATA to TCTA
reduced specific transcription to 49% of the wt level, while a
mutation to TATC decreased it to 21%, as reported. We also found
the binding affinities of three sequences to TBP from another report
[37], as shown in Table S9. The mutation from TATA to TCTA and
TATC led to a reduction in binding affinity to 53% and 37%,
respectively. The rank of binding affinities and transcriptional
activities among the three sequences remained in the same order,
suggesting that the PDI strength relates with the transcriptional
activity, which is crucial for virus assembly and maturation. By
quantifying PDIs with PDIScore, the predicted order consistently
aligned with experimental measurements, demonstrating the
capability of PDIScore to recognize the crucial promoter sequences
and the possible impacts of their mutations.
The second case is the regulation of SOCS1 by Egr1 [57]. The

loss of SOCS1 in tumor cells could upregulate PD-L1 expression
and suppress the antitumor response mediated by cytotoxic T
lymphocytes (CTLs), thereby increasing tumor aggressivity (Fig. 5).
Two Egr1 binding sites are present within the SOCS1 promoter.
Mutating these sites lead to a decrease in the transcriptional
activity of the promoter [12], as shown in Table S10. The
importance of the Egr1 binding sites was further investigated by
testing the S1 and S2 mutants within the SOCS1 promoter using a
luciferase assay. The observed reduction in luciferase activity in
the promoter mutants confirmed the critical role of these binding
sites. According to the results of PDIScore, S1wt and S2wt
achieved the highest scores. The mutation of either S1 or S2 led to
lower scores compared to the wild type, and the mutation of both
S1 and S2 resulted in the lowest score. The predictions aligned
with the experimental results, suggesting that the promoter
mutations could be a possible cause of disease during SOCS1
regulation.

PDIScore is interpretable at the nucleotide level
Besides the interaction between protein and DNA, we might
sometimes be curious about the key nucleotides or residues in PDI,
as this information could provide guidance in the design of DNAs or
proteins. The predicted scores of PDIScore could be decomposed
into the contributions from individual nucleotides in a DNA or
residues in a protein pocket, since PDIScore was built at the
nucleotide-residue level, summing all nucleotide-residue distance
likelihood values to obtain the final score. Taking DNA ligands for
TBP as an example, the contributions of individual nucleotides in
DNAs are shown in Fig. 6, and the darker color of the nucleotide
indicated the greater contribution to the total score. The DNA

Table 5. Ranking powers of SFs on the ranking dataset.

Methods Ranking

PCC(↑) SCC(↑)

Point Mutation

MM/GBSA#bsc1 0.06 −0.02

MM/GBSA#OL21 0.21 0.16

PyRosetta#ref2015 0.30 0.29

PyRosetta#dna_gb 0.41 0.30

FoldX 0.27 0.22

SAMPDI-3D 0.41 0.37

PDIScore 0.50 0.48

AlphaFold3

AlphaFold3 0.12 0.06

PyRosetta#ref2015 0.16 0.16

PyRosetta#dna_gb 0.16 0.17

FoldX 0.09 0.01

PDIScore 0.37 0.32

Fig. 4 Ranking powers of SFs on the ranking dataset. Ranking
power of SFs based on the point mutation (PM, orange) predictions
and AlphaFold3 (AF3, green) predictions, in terms of a PCC and
b SCC.
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ligands were grouped into four sets, each with a different nucleotide
base pair at the 7th position: AT, TA, CG, and GA, while the other
bases remained the same. In each group, the AT paired DNA was
experimentally detected to have the highest binding affinity,
suggesting that the AT pair at the 7th position might be the key
nucleotide pair. We also counted the top10 DNAs out of 19131
based on binding affinity and found that the 7th position was AT
pair in each top DNA, supporting the 7AT pair as the key
nucleotides. In the heat map of nucleotide contribution, the color
of the 7AT pair was the darkest in each group, and the colors of
other positions were similar. This indicated that the importance of
7AT pair could be detected by the decomposition of PDIScore. The
complex structures were also shown in Fig. 6, where the nucleotides
were dyed with the corresponding colors from the heat map. It
could be observed that the 7th nucleotide pair was located in the

protein pocket, and the base part was in full contact with the protein
surface, which might explain the significant change in binding
affinity when the 7th position was mutated. Overall, PDIScore could
provide a nucleotide level perspective to identify the key
nucleotides in the design of DNA ligands.

CONCLUSIONS
In this work, we report PDIScore, a new DL approach that could
predict the binding strength between protein and DNA. Our
approach is composed of graph representation, feature extraction,
concatenation, and MDN modules. We employ a comprehensive
set of structural descriptors, including 11 atom distances and 20
dihedral angles for graph representation, in order to capture the
subtle conformations of nucleotides. Considering the large

Fig. 5 PDIScore predicts the transcriptional activity of the promoter in the regulation of SOCS1 by Egr1. a The regulation of SOCS1 by
Egr1 and the role of SOCS1 in the immune system. During the regulation process, Egr1 identifies and binds to its specific binding site, often
characterized by a core consensus sequence like GCGGTGGCG. This binding triggers the transcription of target genes, resulting in the
production of mRNA, which is subsequently translated into the SOCS1 protein. In the immune system, SOCS1 acts as a crucial regulator and
inhibits adaptive immunosuppression mediated by IFNγ-induced PD-L1 expression. b, c Transcriptional activity and binding affinity predicted
by PDIScore for the wild-type (wt) and mutant (mt) promoters. d The S1 and S2 sequences of the wt and mt.
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contact areas of PDIs, which are reflected as large graphs in
feature extraction, we adapt graphGPS and BigBird to handle
graphs comprising several thousand nodes. The MDN modules are
proven to effectively learn the probability density distribution of
the distance between each residue and each nucleic acid.
PDIScore, in turn, outperforms all existing methods on various

datasets, whether in terms of screening, docking or ranking
power. In the screening set, PDIScore based on the AlphaFold3
predictions achieves an optimal EF1% value of 14.13% and the best
PCC value of 0.65. In the docking set, PDIScore reaches the highest
top1 success rate of 48.94% compared with HDOCK, PyDockDNA,
HADDOCK, AlphaFold3, PyRosetta#ref2015, PyRosetta#dna_gb,
and FoldX. As for the ranking set, PDIScore based on the point
mutation predictions achieves the best PCC value of 0.50. In the
screening and ranking sets, the performance of AlphaFold3 is
enhanced by PDIScore, showing its utility as a rescoring tool for
AlphaFold3. As for interpretability, PDIScore is built at the residue/
nucleotide level, so its predicted scores can be naturally
decomposed into the contributions of residue-nucleotide pairs,
identifying the key nucleotides in our case study.
Given its various capabilities and wider application range,

PDIScore shows promising potential for PDI-related drug design.
Its scoring capability can be used in screening task, saving
experimental time and costs, and its docking capability enables it
to be embedded into an ensemble strategy for structure
prediction. As for the application range, on the one hand,
PDIScore can be used for the screening of DNA drugs, such as
DNA aptamers for the protein targets; on the other hand, it can be
used for the screening of protein drugs or peptide drugs, such as
cyclic peptides for the DNA targets. Considering the scarcity of
open-source related datasets, we look forward to conducting
more validation tasks in real scenarios in the future. Additionally,
the current calculations are based on static conformations, while
the interactions between proteins and DNAs are dynamic
processes. The lack of consideration for flexibility might be a
limitation of PDIScore. Introducing dynamic structures into the
training set can expand the dataset, mitigate distributional
imbalance, and potentially improve the performance of PDIScore
in future research.
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