
SELF ORGANIZATION IN COMPUTATION & CHEMISTRY:

RETURN TO ALCHEMY

COLE MATHIS1,2,∗, DEVANSH PATEL1,3, WESTLEY WEIMER4, AND STEPHANIE FORREST1,2,3,5

Abstract. How do complex adaptive systems, such as life, emerge from simple constituent parts? In

the 1990s Walter Fontana and Leo Buss proposed a novel modeling approach to this question, based on a

formal model of computation known as λ calculus. The model demonstrated how simple rules, embedded
in a combinatorially large space of possibilities, could yield complex, dynamically stable organizations,

reminiscent of biochemical reaction networks. Here, we revisit this classic model, called AlChemy, which

has been understudied over the past thirty years. We reproduce the original results and study the
robustness of those results using the greater computing resources available today. Our analysis reveals

several unanticipated features of the system, demonstrating a surprising mix of dynamical robustness

and fragility. Specifically, we find that complex, stable organizations emerge more frequently than
previously expected, that these organizations are robust against collapse into trivial fixed-points, but

that these stable organizations cannot be easily combined into higher order entities. We also study
the role played by the random generators used in the model, characterizing the initial distribution of

objects produced by two random expression generators, and their consequences on the results. Finally,

we provide a constructive proof that shows how an extension of the model, based on typed λ calculus,
could simulate transitions between arbitrary states in any possible chemical reaction network, thus

indicating a concrete connection between AlChemy and chemical reaction networks. We conclude with

a discussion of possible applications of AlChemy to self-organization in modern programming languages
and quantitative approaches to the origin of life.

1. Introduction

The origin(s) of life remain an unresolved mystery in science, that is, how unconstrained reactive
compounds were selected to form the organized biochemical networks that form the basis of Darwinian
lineages. In the early 1990s Walter Fontana and Leo Buss proposed a novel approach to this problem
based on a formal model of computation known as the λ calculus [1, 2, 3]. In a departure from the
prevailing dynamical systems perspective, they modeled how novel objects might emerge through uncon-
strained interactions. This approach emphasized the primacy of chemical reactivity over predetermined
reactions in their model. Their work was one of the first artificial chemistry models based on construc-
tive processes, it focused on the production of new entities (construction) over time rather than motion
through predetermined state spaces (dynamics) [4, 5]. The model, dubbed AlChemy (for Algorithmic
Chemistry), was based on the construction and composition of λ expressions—objects whose internal
structure determines their relation and interaction with each other [6].

The original analyses of AlChemy became foundational studies in understanding the origins of self-
organized complexity [5]. However, despite its large impact on several fields, from chemistry [7], to
economics [8] and biology [9], the model itself has remained under-investigated. Two key reasons for
this are: (i) skepticism about its applicability to chemical systems, or primitive living systems [10],
and (ii) the technical challenge of systematically analyzing a system capable of such incredibly diverse
behavior [11, 6, 1]. Here we revive the AlChemy project using the original code base run on modern
machines, considering their results in the context of a more systematic investigation using modern tools
and computational resources. With nearly 30 years of progress in complex systems science and chemistry,
we are also positioned to ask slightly different questions. In particular, we analyze the robustness of
the original results by characterizing the stability of the organizations that form, how they respond
to perturbation, and by performing a statistical survey of whether the identified organizations can be
combined with each other.

(1) Biodesign Institute, Arizona State University, Tempe, AZ 85281
(2) School of Complex Adaptive Systems, Arizona State University, Tempe, AZ, 85281
(3) School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85281
(4) Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, MI 48109

(5) Santa Fe Institute, Santa Fe, NM 87501
(*) cole.mathis@asu.edu
Date: August 23, 2024.

1

ar
X

iv
:2

40
8.

12
13

7v
1

 [
nl

in
.A

O
]

 2
2

A
ug

 2
02

4

2 SELF ORGANIZATION IN COMPUTATION & CHEMISTRY: RETURN TO ALCHEMY

The original code base for AlChemy has been faithfully hosted on the Santa Fe Institute’s website,
and is still accessible [12], a remarkable achievement in open science and the only reason we were able
to perform this reanalysis. Using the original code base, we analyze the statistical properties of the
organizations produced by AlChemy rather than focusing on a few examples, as the original work did.
We found results that are consistent, but not identical, to the original work, and there were a number of
surprises. These differences suggested questions about the sensitivity of AlChemy to different methods
of generating the initial soup of random λ expressions. Finally, we return to the question of whether or
not AlChemy is an appropriate model of chemistry, and show by construction that there exists a corre-
spondence between the state transitions of any Chemical Reaction Network and the reaction sequences
of a model like AlChemy. We use the term simulate to refer to the correspondence between the states
and state transitions of two different systems, without considering intermediate configurations or rates
of reaction. The paper concludes by discussing how, after thirty years, AlChemy offers additional insight
across several domains, including origin(s) of life, astrobiology, biology, and computer science.

2. AlChemy

Fontana & Buss introduced AlChemy to resolve what they called the “existence problem of population
genetics” [2, 3]. This problem is related to the origin of life, and other major transitions in the organization
of living material [13]. By organization, we mean a system with interacting components, which is stable
through time, and that stability is not due to the material stability of any individual component but
instead is generated dynamically by the relationship between itself and the other component parts of the
system. Examples of organizations include living cells, autocatalytic chemical reaction networks, as well
as ecosystems, economic firms and the biosphere itself. It is difficult to determine which features of a
stable organization are necessary and which are contingent. To claim that a feature is contingent requires
demonstrating an alternative form of the organization without that feature—or at least with the feature
instantiated by different means [3]. In the context of the origin of life, this is a problem because we
can characterize the dynamics of (bio)chemical reaction networks as we know them, but these dynamics
themselves are incomplete explanations for the existence of the underlying network. We are less interested
in “what are the dynamical properties of this reaction network?” than we are in “why does biology use
these reactions, instead of the vast ensemble of alternatives? [14]” AlChemy was designed to address the
latter question, by providing a model to study the emergence of many stable organizations and compare
them [3].

AlChemy abstracts away the details of real chemistry and focuses on three key features: (i) a vast
combinatorial space of objects that can be constructed from a finite set of basic building blocks, (ii)
interactions between objects lead to the production of new objects, and (iii) the outcome of interactions
is determined completely by the internal structure of the objects involved [2]. These abstract properties
were implemented using the formal model of computation known as the λ calculus [1, 2, 3]. In computer
science, λ calculus played an important role in the development of the theory of computing, and arose
around the same time as Turing machines [15]. It is also the basis of functional programming languages,
most famously, Lisp.

2.1. The λ calculus. We next give an informal description of λ-calculus. A more formally-inclined
reader may wish to consult a rigorous treatment, e.g., [16], and the uninterested reader may decide to
proceed knowing only that the λ-calculus specifies a set syntactic expressions, rules for combining and
transforming them (as in molecular reactions), and rules for simplifying expressions.

In λ calculus, objects are defined as λ expressions. A λ expression takes one of the following forms:

(1) A single variable, x, chosen from some finite set of symbols, Σ.
(2) A lambda abstraction, λx . E, where x is a variable and E is an expression. This form describes

a function that binds x as an argument to its body, E.
(3) An application (E1) E2, where both E1 and E2 are expressions. This form describes the compo-

sition of objects. If E1 is a function, then E2 is the argument to that function.

Intuitively, we have a system of variables, function definitions (called abstractions), and function applica-
tions (in which arguments are bound to variables or other functions). However, expressions can contain
both bound and free variables. A bound variable is simply one that is associated with a λ abstraction,
and all other variables are free. For example, in the expression λx. x y, x is bound, and y is free.

In addition to the three basic forms described above, λ calculus has two substitution rules for simplify-
ing expressions as far as possible, referred to as a normal form. These rules are the ‘calculus’ component
of λ calculus and are known as β-reduction and α-substitution. The application of these rules to a λ
expression is conceptually similar to simplifying a mathematical equation.

SELF ORGANIZATION IN COMPUTATION & CHEMISTRY: RETURN TO ALCHEMY 3

An expression is β-reducible if it has the form (λx. E1) E2. In such an expression, β-reduction first
substitutes E2 for each x in E1 that is bound to λx, and then drops the λx. α-substitution uniformly
renames a variable in a λ expression, similar to renaming a variable in an algebraic expression. When we
perform an α-substitution of a binding variable x in an expression E by another variable y, we substitute
the binding λx with λy and all instances of x bound by λx in E by y. If x is free, we substitute only the
free x by y.

We consider some simple examples to illustrate the basics of λ calculus, particularly those most relevant
to AlChemy. Consider two λ expressions, (i) λx. x w, and (ii) λy. λz. y. The composition (application)
of (i) and (ii) gives the expression (iii) (λx. x w) λy. λz. y. This expression is of the form (λx. E1) E2,
where E1 = x w and E2 = λy. λz. y. We can use one β-reduction here, substituting for x by E2 in E1

and dropping the λx. This gives E2 w = (λy. λz. y) w.
There is a well-defined computational procedure for generating the normal form of a λ expression,

if one exists. Isolated variables (expressions with top-level abstractions), and applications without an
abstraction on the left-hand side do not admit β-reduction. Such expressions are already in normal form.
AlChemy requires that every expression be in normal form, and so these expressions tend to make up
much of the population. However, not every expression has a normal form, because certain expressions
may never reduce to a terminating state (this follows from λ-calculus being Turing complete). An example
of such an expression is the Ω combinator: (λx. x x)(λx. x x), which reduces to itself in one β-reduction.
We can see this by applying a β-reduction, observing that this expression takes the form (λx. E1) E2 with
E1 = x x and E2 = (λx. x x). The substitution of each x in E1 with E2 yields E2 E2 = (λx. x x)(λx. x x).
Additional β-reductions produce the same expression, and thus this expression has no normal form. The
Ω combinator is one of many non-terminating expressions. Worse yet, for any given expression it is
computationally undecidable to determine if its reduction will terminate in normal form. AlChemy takes
a pragmatic approach to this problem by attempting to reduce an expression a given number of times
before giving up.

Correctly reducing a λ expression to normal form with the same meaning may also require α-substitution
to avoid incorrectly overloading (“capturing”) variable labels. For example, consider the expressions (i)
λx. λy. x and (ii) λx. x y. Composing (i) and (ii) gives (iii) (λx. λy. x y)λx. x y. This expression is
reducible: it takes the form (λx. E1) E2, with E1 = λy. x y and E2 = λx. x y. If we attempt to β-reduce
this expression directly, we get λy. (λx. x y) y. However, the isolated and free y in E2 is now bound
incorrectly (captured) by the λy in E1. That is, the meaning of the argument E2 is semantically different
within the expression after the incorrect reduction. The meaning of E2 within E1 can be preserved by
renaming the conflicting λy in E1 to any fresh (unused) name before reduction, here we choose z. The
expression E1 is α-equivalent to E′

1 = λz. x z, and the composition of E′
1 and E2 yields λz. (λx. x y) z.

This preserves the free y, and does not change the meaning of the argument within E1 after reduction.

2.2. λ expressions in AlChemy. Using λ calculus as the basis of the model, Fontana & Buss generated
what could be described as a “Turing Gas”— a collection of random expressions that “collide,” where a
collision causes one expression to be applied to another, and the resulting expression is reduced to normal
form (e.g. A + B → A + B + C, where C = (A)B) [2, 5]. This constructive process is interpreted as a
catalytic reaction, where every object in the system can serve as a reactant in some reactions, and as a
catalyst in others [10]. Notice that the composition of λ expressions is not commutative ((A)B ̸= (B)A),
which means that for each pair of λ expressions, there are two possible reactions, which are chosen with
equal probability in AlChemy. AlChemy does not rely on or suggest an inherent “computational” nature
of chemical systems. Rather, the relevant features of λ calculus are (i) an infinite set of possible objects
(expressions) that can be generated from a small set of building blocks (variables), and (ii) the ability to
generate new objects according to simple interactions between existing objects [2].

AlChemy simulations proceed as follows: i) initialize the system with a set of N random λ expressions,
(ii) perform a collision, by picking two expressions at random, applying the first to the second and
reducing to normal form, (iii) add the newly generated expression to the system, (iv) remove a random
expression to keep the total number of expressions constant, and (v) repeat steps ii–iv until T collisions
have been performed. Time is measured in units of collisions, i.e., each collision corresponds to one time-
step. Because λ expressions are selected according to their abundance in the soup, this process obeys
the principle of mass action, meaning that the rate of reactions is proportional to the product of the
reactant concentrations. The model is of interest because when one starts with distinct, arbitrary, and
randomly generated expressions, the procedure does not produce more distinct, arbitrary, or otherwise
random expressions. Instead, the simulations generate a collection of λ expressions which collectively
reproduce each other, which have interrelationships that are not predictable by the rules of λ calculus
alone, analogous to the relationship between biochemistry and standard physics [3, 17].

4 SELF ORGANIZATION IN COMPUTATION & CHEMISTRY: RETURN TO ALCHEMY

To implement the model, two additional features are required: termination and filtering. The reduction
of an expression is not guaranteed to terminate, and there is no way to know ahead of time which ones
these are (a manifestation of the famous Halting problem). Therefore, in AlChemy, when two expressions
collide, it is possible that the resulting product may never reduce to normal form. This infinite regress
is prevented using pragmatic reduction. A finite limit is placed on how many times each expression
is reduced. If the reduction does not terminate by the limit, the reaction is deemed elastic, and the
original expressions are returned to the simulation. Finally, to explore different boundary conditions on
AlChemy’s dynamics, the original authors included an option of excluding certain reactions based on
pattern matching, referred to as syntactic filters. For example, the original work includes simulations in
which copy actions are excluded by identifying reactions that produce an explicit copy action (of the form
A + B → 2A + B) by comparing the products and reactants and labeling any such reaction as “elastic.”
Syntactic filtering allows AlChemy dynamics to be modified by removing entire classes of reactions. The
impact of such filters has not been studied carefully, except the case just mentioned where copy actions
are eliminated. Simulations can be run with our without syntactic filters imposed.

3. Prior Work

The original Fontana & Buss paper was a landmark study in constructive dynamical systems and
inspired subsequent work across several domains [4, 7, 8]. In the field of artificial life some authors
proposed modified versions of AlChemy based on combinator logic (rather than simple λ calculus) [18, 19,
20], producing systems admitting reversible reactions or constraints such as conservation laws analogous
to conservation of mass. Those simulations found results that are qualitatively similar to those originally
reported by Fontana & Buss [18], though with additional rules imposed on the system. We did not
pursue combinator logic here, in part because we were interested in exploring and reevaluating the original
AlChemy simulations with the original code base. One of the most interesting aspects of using λ calculus
as a constructive model is that it allows for open-ended evolutionary dynamics (up to some practical
computational limit). Inspired by this, Masumoto & Ikegami used λ calculus and genetic programming
to explore the evolution of strategies in game theory, modeling agent strategies and the game itself as λ
expressions [21]. Similarly, rule-based modeling approaches have been adopted in the Kappa language to
more closely mimic biochemical systems and gene regulatory systems [22].

3.1. Results from the original AlChemy papers. In their original work Fontana & Buss define a
hierarchy of functional organizations they observed in AlChemy [3, 2], identifying three distinct organi-
zational levels, known as ‘L0’, ‘L1’ and ‘L2’ organizations. The simplest, L0, is described by the authors
as the typical fixed point of a simulation. It is characterized by the dominance of simple copy functions
which emerge easily and quickly take over the system. This occurs because the function of copying any
input is trivial in λ calculus, the expression λx1.x1, will copy any function it is applied to, and thus
highly likely to emerge in most random samples of λ expressions. It is easy to detect L0 organizations
in a simulation because when they emerge the number of unique expressions in the system tends (down)
toward one (because copy actions make more of the copier which dilutes out other species).

The next level of the hierarchy is L1 organizations. The original experiments generated L1 organiza-
tions when syntactic filters were added to the system to prevent all simple copy actions, i.e., those that
characterize L0 organization. With this added constraint, L1 organizations emerged. They are charac-
terized by autocatalytic sets of expressions, in which each member of the set can be produced by the
interaction of other members of the set, even though no member reproduces (copies) itself directly [5].
L1 organizations can have much richer dynamical properties than L0 organizations. By definition, the
number of unique expressions contained in the organization must be greater than 1, a clear signature that
differentiates them from L0 organizations. L1 organizations are robust to perturbation; in fact they are
identified in the original work by running the simulation, and repeatedly perturbing the system through
the addition of random expressions. In addition, L1 organizations are not necessarily closed under in-
teraction; at any given time in an L1 organization the composition of two expressions could yield a new
expression not currently in the system. Over time, however, these new expressions will be diluted out
of the system because they are not being generated consistently. Thus, the long term evolution of the
system of expressions tends to converge to some stable distribution with finite fluctuations around it.
Given the size and diversity of the combinatorial space of expressions, there is no guarantee that all (or
even most) L1 organizations will converge to the same distribution. In the original work, the authors
give examples of several distinct L1 organizations, each with its own unique internal structure and logic.
The rules of these systems are consistent with, but not explained by, the rules of λ calculus itself, just as
the apparent rules governing living systems are consistent with but unexplained by the laws of physics
and chemistry as we know them.

SELF ORGANIZATION IN COMPUTATION & CHEMISTRY: RETURN TO ALCHEMY 5

The highest level of organization characterized in the original work are ‘L2’ organizations. These are
composites of L1 organizations and can be discovered either spontaneously using the same constraints as
the L1 organizations, or by manually composing two previously discovered L1 systems. L2 organizations
are characterized by the existence of two or more L1 organizations and additional expressions (called ‘glue’
in the original work). The ‘glue’ expressions could not exist without at least one of the L1 organizations
and are produced by composing functions from different organizations. L2 organizations may be difficult
to identify when they emerge spontaneously because deciding whether an organization can be split into
two distinct stable organizations is a difficult problem to solve without resorting to trial and error.

To avoid confusion we distinguish between “organizations” and “simulations.” When we say an ‘L1
simulation” we mean the simulation parameters described by the original authors that generated “L1
organizations.” So, for example, while our analysis shows that “L0 simulations” can produce complex
organizations, we will continue to refer to them as “L0 simulations,” without commenting on where the
results belong in the organizational hierarchy.

4. Experimental Results

This section first details how we recompiled the original code in a modern computing environment,
and then reports the results of our investigation into the organizational hierarchy described by Fontana &
Buss. We were largely able to reproduce their key simulation results, with some interesting elaborations
on the statistics of the originally reported behaviors. This was possible only because the original authors
archived their implementation and hosted it publicly. This provided a unique opportunity to revisit a
landmark study nearly three decades later with the advantage of modern computing resources.

Much of the original AlChemy project was written in an early version of C, and the code has several in-
compatibilities with modern compilers. Therefore, it was not possible to compile the exact original source
with modern compilers such as gcc 4xx. Accordingly, we made a small number of minor modifications,
which to our knowledge do not change the semantics or behavior of the original program.

The biggest change was that the code could not be compiled with the version of camllight distributed
with the code. Instead, we adopted a slightly different version of camllight [23]. Beyond this only minor
modifications were required, which primarily involved changing include statements, and making minor
changes to function names. Specifically we had to to include the headers stdlib.h, string.h, time.h,
in several files. We renamed one function in LambdaReactor/main.c originally called select(...) to
peep(...) which avoids a naming conflict. This function is called only once in that file and nowhere
else. In one function (Original_reaction() in LambdaReactor/interact.c we updated the memory
allocation call to use calloc(), rather than a function in the original code base, space(), which was
defined in LambdaReactor/utilities.c. With these changes, the original source compiled successfully
in our environment and are available at [24], which includes a docker container, and Python scripts to
run the code and analyze outputs.

The dynamics of AlChemy are easy to infer based only on a description of the simulation. As an
example, Figure 1 shows an organization that emerged in a simulation using the recompiled code. The
simulation was initialized with 1000 random expressions generated with a maximum depth of 7 (see
Section 5.2), pragmatic reduction was set to a maximum of 500 reduction steps, and copy actions were
prohibited. The simulation ran for a total of 500k collisions. This simulation was part of our statistical
survey, selected after the fact as a useful example because it contained only four expressions at the
end of the run. It illustrates the simple L1 organizations identified by Fontana and Buss and described
in Figure 2 of [2]. Figure 1A shows the actual λ expressions, which we label with a, b, c,&d. Figure
1B, shows the time-series of the organization. The horizontal axis indicates the collision number of the
simulation (time), and the vertical axis shows the relative abundance of each unique expression (the
vertical placement of each expression is arbitrary—only its relative area on the plot is relevant. The
simulation is initialized with 1000 random expressions, and each unique expression is assigned a gray-
scale color, except for the four expressions in the final stable organization (i.e., a, b, c&d). The reaction
rules implied by the expressions are shown in Figure 1, and its network representation is shown in 1D.
There are only 12 reaction rules, instead of the 16 possible combinations of four expressions, because four
combinations would produce copy actions and be filtered. This example shows how AlChemy simulations
can produce random expressions that repeatedly interact to produce a stable, self-consistent organization
with its own internal logic.

4.1. L0 Organizations. Recall that L0 organizations are expected to emerge in the least constrained
version of AlChemy, as they are dominated by trivial copy actions (e.g., the identity function λx1.x1,
applied to itself). Fontana & Buss detected these by running the simulation without syntactic filters,
and iteratively perturbing the system by adding new random expressions after the simulation ran for

6 SELF ORGANIZATION IN COMPUTATION & CHEMISTRY: RETURN TO ALCHEMY

Figure 1. Example AlChemy simulation and the organization it produced. (A) The
four λ expressions remaining at the end of a single simulation run, which constitute the L1
organization. (B) Timeseries of the simulated run where the vertical axis represents the
fraction of the population occupied by any given expression. Each expression is assigned
a grey-scale value, except the four winners shown in (A). After a few hundred collisions all
four expressions in the final organization had emerged, and by ≈ 35k collisions they were
the only expressions remaining in the simulation. (C) The reaction rules that correspond
to the final organization, showing that it is closed under interaction between any two
expressions. (D) Network representation of the reaction rules from (C).

a long time. When the number of unique expressions converged to one or just a few expressions, the
simulation invariably contained identity functions that copy themselves through application to other
identity functions. This trivial fixed point (e.g. all λx1.x1) exemplifies the L0 organizations. We recreated
this experiment using wrapper scripts that call the original code and manipulate the input/output files
(available online [24]). Specifically we simulated 1000 unique expressions for over 1,000,000 collisions,
then we added 100 random expressions to the system and ran it for another 1,000,000 collisions, repeating
this process a total of five times. See section 5 for details on how random expressions are generated. Two
example time-series from this experiment are shown in Figure 2(A), one of which illustrates the expected
behavior (shown in red). Here the dashed lines indicate the times at which perturbations were introduced.
The two colors represent two different runs of the simulation with different random seeds.

In contrast with the original results, we found some L0 simulations that do not end in trivial fixed
points, dominated by copy functions. In some of our simulations more complex organizations emerged,
which are characterized by a large number (10–100s) of distinct expressions and robustness to repeated
perturbations. These organizations are consistent with the description of L1 organizations and possibly
even L2 organizations. The blue line in Figure 2 (A) shows an example. This simulation had a steady
state of about 380 unique expressions, and it was unaffected by perturbations. The distribution of steady-
state unique expression counts is shown in Figure 2 (B). Many simulations end with only a few species,
but some simulations end with 10s or 100s of unique expressions. This was unexpected given that these
systems should not be robust to the addition of copy expressions. These results are interesting for the
same reason the ‘L1’ organizations in the original work are interesting: they demonstrate that stable
organizations can emerge with complex internal structure, from seemingly random inputs and minimal

SELF ORGANIZATION IN COMPUTATION & CHEMISTRY: RETURN TO ALCHEMY 7

Figure 2. L0 Simulations. (A) Time series from two different representative simulation
runs (red and blue), showing the number of unique expressions through the runs. In both
cases the maximum number of objects was set to 1000 and a total of 6 × 106 collisions
were performed. Every 106 collisions (grey dashed lines) we introduced a perturbation
by adding 100 random expressions to the simulation. (B) The distribution of unique
expressions across 1000 different simulations after the fifth perturbation (median across
the previous 106 timesteps of the simulation), inset shows the same data on log-log scales.
The number of expressions at steady state seems to vary across orders of magnitude and
is heterogeneously distributed. (C) The organizations stabilize with fixed macroscopic
parameters, even though the expressions themselves are continually changing, the average
expression length and population entropy (a measure of diversity) are shown for different
simulations. Each color is a different simulation with the identical run parameters, each
point represents a snapshot of the simulation at different time points. (D) Survival Rate
over time of different organizations when they are perturbed by replacing p% of the
expressions with the identity function. Different colors correspond to different values of
p.

rule sets. The only constraints imposed on this system are the composition rules of λ calculus and an
initial set of expressions. From these the simulations produce an organization defined by a network of
mutually dependent interactions, which were not manually encoded in the initial conditions. This type
of self-organized complexity is exactly the type of phenomena we would like to be able to observe in
chemical systems [25, 26].

As in the original work, we detect stable organizations that contain enormous diversity. We can
characterize this diversity by measuring average properties of an entire population and comparing them
against each other, for example the average length of expressions and the population entropy. By popu-
lation entropy, we mean the diversity of the expressions in a system, which we can calculate by making
a species distribution curve and calculating its entropy. Figure 2(C) shows some of this diversity. Each
color in this panel indicates a different simulation run with the same parameters, and each point is a
single snapshot (point in time) in the simulation (after all perturbations have been performed, e.g., the
previous 100 snapshots). The horizontal axis shows the population entropy (diversity) of the simulation
at the given snapshot. If each of the 1000 expressions were unique, the entropy would be 3, and if it

8 SELF ORGANIZATION IN COMPUTATION & CHEMISTRY: RETURN TO ALCHEMY

contained only copies of a single expression, the entropy would be 0. The vertical axis shows the average
length of the expressions in the simulation at that time. These two parameters do not mutually constrain
each other in the dynamics. However it is interesting that once an organization has been established, its
own internal dynamics determine the diversity of the population, the length of the expressions, and the
variation of those parameters through time. For example, the orange and blue points show similar values
of population entropy and expression length, but the blue simulation has less variation than the green.
Some stable organizations are tightly constrained by their internal dynamics, while others enable wide
variation in their averaged properties.

Given the surprising emergence of larger stable organizations, we wondered if they were in fact robust
to copy functions, or if copy functions had never emerged in the system, and when introduced if they
would lead to the destruction of the stable organizations. To test this we initialized 200 simulations with
the λ expressions from the end state of 50 different simulations (e.g. a random subset of those shown in
Figure 2B). We used each such end state to generate four initial populations for further simulation. In
each initial population we replaced a random p percentage of the expressions with the identity function
λx1.x1, and then ran the simulation for an additional 106 collisions. At each step we recorded whether the
organization had “survived,” by evaluating whether there were any expressions other than the identity
expression remaining in the system (in this case ‘dying’ means collapse into the state of only λx1.x1).
Figure 2(D) shows the results of this experiment, for different values of p. Surprisingly, the organizations
required very large perturbations to be destroyed. Even replacing 50% of the expressions with the identity
function did cause collapse, and 90% replacement destroyed only some, but not most, of the organizations.
Even replacing 99.9% of the expressions (e.g. leaving only a single expression other than the identity),
led to relatively long transients before the organizations collapsed.

One reason for this surprising robustness is the non-commutative nature of AlChemy. The application
of λx.x to any function will return the function itself, but the application of any function f to λx.x will
not necessarily return f or λx.x. This feature, combined with the fact that all reaction are “catalytic”
(A+B → A+B+C) enables relatively long transients, even when the majority of interactions are copy
actions. Importantly, when relatively large perturbations are applied to organizations (as in Figure 2D),
the organization is often fundamentally altered, bearing little resemblance to the organization before the
perturbation. These results demonstrate that the most likely fixed point (only λx.x) is difficult to access
using expressions produced by a long AlChemy simulation.

4.2. L1 Organizations. Fontana & Buss used syntactic filters to eliminate the effect of copy func-
tions (like λx.x) (as described above). Although our analysis shows that these functions are unlikely to
dominate the system in general, we followed the procedures outlined in the original work. We ran L1
simulations following the protocol described above for ‘L0’ except that we imposed syntactic filters to
bar copy-actions. We refer to the resulting organizations as “L1 organizations” even though they appear
similar to many organizations we found with L0 simulations. Our simulation results are consistent with
those described in the earlier work. Given the robustness of the organizations we observed with L0 simu-
lations (figure 2), for L1 we focused our attention on statistically analyzing the robustness of discovered
organizations to random perturbation, instead of the targeted perturbations shown in Figure 2 D).

We measure the similarity of λ expressions at any given point in time using the Jaccard Index [27] as
a measure of similarity between two sets (organizations). The Jaccard Index is simply the ratio between
the intersection and the union of two sets. When the Jaccard index is close to 1.0 the two sets contain
nearly identical expressions, when it is close to 0.0 they are nearly disjoint. We note a potential weakness
of the Jaccard Index is that it does not account for the relative abundance of expressions in a population.
Thus, in the following, whenever we refer to the similarity between A and B, we mean the Jaccard Index
of A and B.

We consider the copy frequency (count) in Figure 3(A). We ask, for two organizations that have a given
similarity at the same time step, how are the expression counts distributed (i.e., how many copies are
there of each different expression)? Figure 3(A), plots the distribution for three different examples, each
illustrating a different level of similarity. Each plot shows two different organizations (Blue and Red) each
bar indicates a different expression, and the size of the bar indicates the copy number of that expression
in the organization (red is inverted to show a clear comparison to blue). The bars are sorted according
to the sum of the copy number in the red and blue organization. When similarity is high, the expressions
in both organizations are nearly the same, and we find that corresponds to similar copy numbers for
each expression (even though the Jaccard index does not track this explicitly). When similarity is low,
the number of expressions common to both organizations is low, and the copy number of the shared
expressions are often different. This suggests that when stable organizations emerge, their relational
structure is determined by the expressions they contain and copy number is largely determined by that

SELF ORGANIZATION IN COMPUTATION & CHEMISTRY: RETURN TO ALCHEMY 9

Figure 3. L1 Simulations and Similarity over time. (A) Abundance Distributions il-
lustrating pairs of similar organizations. Each plot shows two different pairs (Blue and
Red); each bar corresponds to one expression that is a component of each member of
the pair; the ordering of the expressions is determined by the sum of their abundance
in both members of the pair. The vertical axis indicates the expression copy number
with the red values inverted to facilitate comparison. High symmetry between blue and
red indicates similar copy number, low symmetry indicates different copy numbers be-
tween the organizations. (B) Stability analysis of four L1 organizations that emerged
in simulation. Each organization was initialized with a modification, either “perturb”
(10 random expressions added), or “seed” (different random number seed only). The
similarity between the modified and original simulations is shown in solid orange lines.
The similarity of the original simulation to itself at a previous time-step (500 collisions
earlier) is used as a control, and it is shown in the purple dashed lines. Each panel shows
a different input organization, selected to highlight the diversity of possible outcomes.

structure. A priori, this need not be true, it is not difficult to construct chemical reaction networks that
exhibit bi-stability, which would mean a single set of compounds and reactions could generate two distinct
sets of concentrations. But, this does not appear to be the case for the organizations found here. For
organizations discovered by the L1 simulations, bi- or multi-stability appears rare. Although bi-stable and
oscillatory CRNs are ubiquitous in biochemical reactions, and trivial to produce theoretically, empirical
systems exhibiting bi-stability are relatively rare, and often must be engineered into a system through
fine control [28, 29].

We next considered the stability of the organizations through time and how they respond to pertur-
bation. We measured the similarity of a simulation state to itself at an earlier time, comparing the state
at time step t, and t − n, for several different values for n. We found different but similar trends for
values of n between 100 and 2000 collisions, and we show results for n = 500 in Figure 3B (dashed purple
lines). In general, even when the number of unique expressions in the simulation remains stable over
time, the internal structure of the organization is not as stable—the expressions are continually changing
over time, to varying degrees.

To study this turnover of expressions, we investigated both perturbations to the expressions themselves
and changes to the simulation procedure (how collisions are selected). We first make small changes to

10 SELF ORGANIZATION IN COMPUTATION & CHEMISTRY: RETURN TO ALCHEMY

the state of the system (e.g., x → x + ϵ), which involved removing 10 randomly selected expressions,
and adding 10 randomly generated expressions. In deterministic dynamical systems this is what many
practitioners mean by perturbation [30], and we refer to this as “perturb.” Second, we consider a
modification that changes the order in which expressions collide [30], referred to as “seed.” In AlChemy,
collision order is determined by the pseudo-random number generator, and in this modification we ran
the simulation with a different integer as the seed for the pseudo-random number generator.

We randomly selected different L1 organizations from the simulations and performed each modification
independently, which resulted in two new organizations that we ran for 105 additional collisions. For each
resulting simulation we measured the similarity between the modified simulation and the unmodified
simulation, as well as between the modified simulation and itself 500 collisions in the past. We repeated
this experiment seven times for each organization. We observed a diversity of possible outcomes, we
show three representative organizations in Figure 3 (B). Each panel shows the similarity of a modified
system to its unmodified counterpart, two panels for each of the three organizations, one for each type
of modification.

In organization 1 both types of modifications often led to different organizations, sometimes not over-
lapping at all with the original, as does the self-similarity control, suggesting that the original system
was not truly stable. In organization 2 both types of modifications eventually produce an identical or
nearly identical organization to the original, as does the self-similarity control. Finally, organization 4
demonstrates that a single organization can produce different responses depending on the type of modifi-
cation. In some cases (but not all) “perturb” led to a new organization, while in others the organization
eventually returned to its original state (e.g. similarity ∼ 1). In all cases, however, the “seed” modifica-
tion caused systems to slowly drift apart into distinct states (low similarity), and these states were stable
through time (high self-similarity). These results show that the stability of ‘L1 organizations’ varies
widely, both through time and in robustness to external perturbations. In some cases (as in organization
2) they are highly robust, while in others (organization 1), they are highly sensitive. These differences
suggest that the organizations we found respond differently to environmental changes. This makes them
interesting targets for a Darwinian process, because we know, e.g., that different organizations will have
different capacities to respond to selective conditions. A promising future direction for this work would
include competition and selection among different organizations.

Figure 4. L2 Simulations. Composite organizations were formed by combining two dif-
ferent L1 organizations (L and R) into the same simulation and running the combination
for 106 collisions. (A) time-series of the similarity of the composite to the inputs; color
corresponds to different choices of L and R. (B) three possible outcomes: (i) Mutual
Destruction (the composite retains almost no similarity to either input); (ii) Dominance
(one input eventually dominates the other, and the final organization reverts to the dom-
inant input); (iii) Coexistence (the final organization retains significant similarity to both
inputs). The relative frequency of these outcomes is summarized in the table.

4.3. L2 Organizations. The highest level described by Fontana & Buss are L2 organizations, which are
composites of stable L1 organizations. In the original work, Fontana & Buss identified L2 organizations
in two different ways, first by combining two independent L1 organizations found in different simulations,
and then by identifying an L1 simulation in which two separable organizations emerged. We did not

SELF ORGANIZATION IN COMPUTATION & CHEMISTRY: RETURN TO ALCHEMY 11

attempt the latter. It is possible that the results we reported in the previous sections were in fact L2
organizations with separable internal structure. Instead, we interrogated whether combinations of our
identified L1 organizations could coexist. We started with two L1 simulations (L and R) each with 1000
expressions remaining at the end of a series of over 106 collisions and five perturbations, and combined
them into a single simulation with the maximum number of objects set to 2500. We then ran that
simulation for 106 more collisions and measured the similarity of the system to the original inputs (L and
R). Figure 4(A) shows results for eight representative runs, each of which was initialized with different
choices of L and R. The left two panels show similarity to the L and R inputs over the simulations,
and the colors in each panel correspond to the same simulation. In many cases, one input organization
dominated the other, e.g., the orange organization, which retains its similarity to the original L input.
Likewise, it retains 0 similarity to the R input. We partitioned the outcome of these simulations into
three coarse categories: (i) Dominance—the organization retains non-zero similarity to one input but
not the other, (ii) Coexistence—the organization retains an average similarity > 0.1 to both inputs, and
(iii) Mutual Destruction—the organization retains < 0.1 average similarity to both inputs. Figure 4(B)
summarizes the relative occurrence of these outcomes across 455 pairs of simulations. These results show
that the organizations produced by AlChemy can possibly coexist, but it rarely occurs for organizations
evolved in different simulations.

5. Generating Random λ Expressions

An AlChemy run is initialized with random λ expressions. The system can be sensitive to its initial
conditions, and thus the distribution of random λ expressions from which the initial conditions are
sampled affects the output. We describe and study the existing method of generating λ expressions,
used in the original AlChemy, and a second method that samples expressions more ‘uniformly.’ The
original method uses a probabilistic grammar as its core random object, and the second method uses a
random binary tree. For AlChemy to produce nontrivial results, free variables must be removed from the
generated expressions. This can be done by binding the free variables, a process called standardization,
and the way expressions are standardized can have interesting dynamical consequences for the simulation.
We study the consequences of two random expression generators empirically.

Generating random λ expressions is not as simple as generating a random binary variable, or a random
floating point variable. The probabilistic grammar approach (original AlChemy) leveraged the properties
of λ calculus. Imagine reading a λ expression from left to right; there are three possible first characters,
indicating application, abstraction, or variable. The original generator selects one randomly according to
three probabilities p1, p2 and p3 = 1−p1−p2 respectively. When the system generates an abstraction, the
variable bound to that abstraction is set to be distinct from any variable previously bound by an ancestor
abstraction. When the system generates a variable (with probability p4) it is bound to a randomly chosen
parent abstraction if one exists, and with probability 1−p4, it is set to be a free variable. If application is
selected, the system recursively generates two new expressions which can be applied to each other, except
p1 and p2 change linearly with the depth of recursion. At a depth dmax, the probability of variable being
selected is forced to 1, which terminates the recursion. This process guarantees that the syntax tree for
the generated expression never exceeds a given a depth.

Since there are many possible ways that expressions can be generated from a grammar, we wondered
how much the choice of a random generation method affected the results. We studied a simple alternative,
which generates expressions that are distinct from those of the original Alchemy. Our generator, which
we refer to as the Permutation generator, relies on the observation that the abstract syntax tree of a
λ expression forms a binary tree. This can be seen by observing that the grammar rule containing the
most non-terminal symbols is the application rule (E → (E). E), with two non-terminal symbols. This
forms a tree with E at the root and two leaves, each consisting of E. The tree is formed by assigning
the expression on the left hand side of the rule to the root, and assigning one leaf for each of expression
on the right hand side of the rule. A similar process is used, recursively, for sub-expressions that form
subtrees. Because there are never more than two expressions on the right hand side of a rule (and hence,
two children for each node), the structures form a binary tree. Using this observation, we first generate
a random binary tree, then assign variables to the abstraction and leaf vertices of the tree. We use a
standard method for generating random binary trees [31].

Starting with a target number, n, of desired nodes, we first generate a random permutation of the first
n integers, then construct a binary search tree using the permutation. A binary search tree is simply a
binary tree with integer vertex weights and a total order on the children of each vertex, such that the
lesser (left) child always has a smaller weight than the parent, and the greater (right) child has a larger
weight. [32]. Once such a tree is constructed, the syntactic structure of the expression is determined, and

12 SELF ORGANIZATION IN COMPUTATION & CHEMISTRY: RETURN TO ALCHEMY

it remains to randomize the semantic structure. To do this, we assign variables to abstraction (one-child)
and leaf (zero-child) vertices. Application (two-child) vertices do not have a variable associated with
them. As with the original generator, we uniquely assign variables within each abstraction chain, i.e.,
we set the variable bound by an abstraction to be distinct from any variable bound by an abstraction
ancestor, if an ancestor exists. For leaf vertices, we assign a variable at random from a parent abstraction,
unless no parent abstraction exists—if so, we assign it to a free variable.

Figure 5. (A) Representative syntax trees for λ expressions generated by the two gener-
ators. Left (red): Two example trees generated by the permutation method. These trees
are uniform in the ratio of abstractions to applications, and they are parameterized only
by the size of the tree. Right (blue): Five trees generated using Alchemy’s original gen-
erator. These trees tend to have long chains of abstractions, seen here as long branches.
Thus, their corresponding expressions vary greatly in complexity, and simple expressions
(such as one or two-abstraction expressions) are common. (B) Statistical properties of
the binary tree representation of the λ expressions. (C) The dynamical consequences
of these different generators are dramatic; in the permutation method (left) the system
collapses to an inert, trivial fixed point, while the original generator (right) produces a
diversity of complex organizations.

5.1. Standardization. The process of generating random expressions can produce expressions with free
variables. Using the original code, we found that the presence of expressions with free variables in the
simulation usually leads to dominance of the term λx. c, regardless of the syntactic filters. We infer from
this that in the original work all free variables were bound (which was an option in the input file for
simulation), and we followed that protocol here. The process of removing free variables from expressions
is called“standardization,” and there are multiple ways to implement it.

A set of expressions is standardized if each expression in the set is in normal form and has no free
variables. The original AlChemy generator standardized expressions as follows: For each free variable
x occurring in a generated expression, concatenate the string λx to the head of the expression, thereby
binding the free x. This is iterated until each free variable in the expression is bound. This method tends
to produce expressions with long linear chains emanating from the root of the syntax tree as shown in
Figure 5—in effect, producing expressions that describe functions with a large number of arguments.

SELF ORGANIZATION IN COMPUTATION & CHEMISTRY: RETURN TO ALCHEMY 13

Our permutation generator standardized expressions using a different method, as follows: a free vari-
able can only occur at a leaf vertex of a tree if that leaf has no single-child ancestor (an abstraction
node). In this case, because the leaf node is not in the body of any abstraction, the assignment of the free
variable is forced. To standardize such vertices, we modify the tree slightly, introducing an abstraction
vertex immediately above the free-variable leaf. This binds the child vertex to the newly introduced
parent.

5.2. Dynamical Consequences. What is the effect of the different expression generators on the sim-
ulation? Figure 5A shows exemplary trees from each generator (permutation in pink, original in blue).
Using the binary tree representation of λ expressions, we can calculate various properties of the expres-
sions. These are shown in Figure 5B. Simple measures such as the number of nodes in the tree, or the
typical depth (median distance between root and leaf) are given. We also calculated the branching factor
which measures the average number of children each node has. Additionally we calculated a variable
labeled C factor, which is the ratio between the maximum depth of the tree and the log of the number of
nodes. This measures how “bushy” the trees are (if C factor is 1, trees are very bushy/wide, if C factor is
0, the tree is very narrow and stringy). The original generator has a much broader distribution over the
number of nodes in the generated expressions, and a broader distribution of typical depths. The original
generator, however, tends to produce long stringy expressions with lower C factors and higher branching
factors than the permutation method.

To test whether the properties of the original random expression generator had consequences for
the experimental results, we ran simulations using the both the original generator and the random
permutation generator described above. Using each generator we produced five different random initial
conditions, and for each of those conditions we ran the simulations using 5 different pseudo random
number seeds. As above, each simulation contained 1000 unique expressions and ran for 105 collision
steps. We imposed the ‘L1’ boundary conditions, preventing direct copy actions. The number of unique
expressions for these runs is shown in Figure 5C. On the left are the number of unique expressions over
time for the initial conditions generated using the permutation generator, while the right shows the results
for the original generator. The differences are dramatic. Unsurprisingly, the original generator behaves
consistently with the results in Figures 2 and 3. However for the permutation generator the simulations
rapidly collapse into a trivial fixed point containing only the identity function. This is surprising given
that the in other case (such as Figure 2D), this fixed point was stable because of the copying action of
the identity function. However, here we prohibited copy functions, so these identity functions are stable
by other means. We verified that when the identity function begins to dominate a run the vast majority
of interactions are labeled elastic. So in these cases the identity function is being produced through the
interaction of other expressions in the system, and once produced it is essentially inert, because at least
50% or more of its interactions are elastic collisions. The ubiquitous production of the simplest function
from the initial conditions is an unexpected consequence of the new generator described above. These
simulations show how the results from the original work on AlChemy depend on the details of how the
random expressions are generated, and we speculate that the different standardization approaches may
be the key discriminating factor.

6. λ Expressions Simulate Chemical Reaction Networks (CRNs)

A sequence of chemical reactions can be thought of as repeated application of combinatorial substitu-
tion rules to sets of molecules (the reagents), producing a set of products, an approach that is formalized
in CRNs [33, 34]. CRNs are used widely in models of the origin of life [35], biochemical systems [36],
complex systems science [37], and dynamical systems theory [38]. In this section we establish a formal
relationship between CRNs and λ calculus by showing that for any given CRN, the transformations it
enables can be simulated by a set of λ expressions and appropriate reductions.

At first glance, a system based on λ calculus seems very far removed from chemistry. The main
mathematical tool used to study the dynamics of chemical systems are Chemical Reactions Networks
(CRNs). Both CRNs and pure λ calculus can simulate Turing machines, and therefore are Turing
complete. This alone does not mean that λ calculus is a reasonable model of chemistry, especially
considering that the rules of AlChemy are more than the rules of λ calculus alone: they also include
rules about collisions and constraints due to pragmatic reduction. Here we show that a given CRN’s
state transitions can be simulated in a system like AlChemy (albeit based on typed λ calculus). Our
proof is more direct than simply stating the computational equivalence of all Turing complete systems
because it provides the construction. In particular, the construction identifies a λ expression for each
individual reagent in the CRN and uses the collision rules of AlChemy to replicate the state transitions
of the CRN. Our construction relies on typed λ calculus, and it does not address the likelihood that any

14 SELF ORGANIZATION IN COMPUTATION & CHEMISTRY: RETURN TO ALCHEMY

given AlChemy run (with random collisions) will simulate a given CRN, the time dependent behavior of
the CRN, or the reaction rates of the CRN. Instead, it shows that there exists a run that simulates the
CRN’s behavior.

Although easy to describe informally, and widely used in chemistry [34], we next define CRNs formally
to set up the proof that λ expressions can simulate CRNs. A CRN is defined as a set of reaction rules,
represented as a tuple of two sets, (R,S), where S is a finite universe of chemical reagent symbols and R
is a set of reactions. Let Ai, Bj ∈ S be some (not necessarily distinct) reactant and product species. A
reaction is a transformation rule on the chemical species with the following form:

Ri = A1 + · · ·+An −→ B1 + · · ·+Bm.

The state of a CRN at time t is denoted σ(t) and is a multiset whose members are symbols in the
set of possible states, S. A multiplicity of each symbol in σ(t) is interpreted as the quantity of the
reagent corresponding to that symbol that is available at time t. CRN rules are applied to σ(t) to
transform it to σ(t+ τ). The transformation for each rule Ri is defined as follows: if A1, . . . An ∈ σ, then
R(σ(t)) = σ(t+ τ) = σ(t) ∪ {B1, . . . Bm} \ {A2, . . . , An}. To reiterate, each member of the reagents, Ai,
and each member of the products, Bi, can appear multiple times in each rule. The multiplicity of each
member is updated accordingly. If multiple rules are applicable to σ(t), then with uniform probability
one the rules is selected randomly.

If a sequence of rules R⋆ = Ri1 , . . . Rik is applied in succession to σ(t) to produce σ(t + k), we write
σ(t) →⋆

R σ(t + k). If there exists a sequence of rules R⋆ that produces some σ(k) from σ(0) such that
x ∈ σ(k), then we say that the CRN produces product(s) x.

We now show by construction that there exists a simply typed λ calculus system that can simulate
arbitrary sequences of state transitions of any given CRN. This is a refinement of AlChemy, since AlChemy
uses untyped-λ calculus. In a system of typed λ expressions, collisions occur only when the expressions
have compatible types, i.e., reactfions can only occur between certain expressions. In the simply typed λ
calculus, each expression is associated with a discrete type, and the types restrict the reductions allowed
by untyped application. This is similar to the use of types in modern typed computer programming
languages, where function evaluation requires compatible types. We introduce types to guard against
stray reactions (e.g., between species whose reactions are not specified by the CRN). Interestingly in
chemical systems no such formal guard exists, electrons do not have prior knowledge of which reactions
they are or are not allowed to participate in. The typed λ calculus is a computationally weaker structure
than untyped λ calculus and can be simulated by it. Although we do not give a proof here, AlChemy
with types is no more difficult to simulate than AlChemy without types.

Let C be a CRN and ρ an AlChemy system with types. Consider a sequence of reactions R⋆ =
Ri1 , . . . Rik applied to C at time t. We show that there exists some transformation A : C → ρ such that
if there exists a sequence of reactions R⋆ on σ(t) producing σ(t+ k), then there also exists a sequence of
collisions β⋆ on A(σ(t)) that results in A(σ(t + k)) (figure 6). For this commutativity property to hold
(Figure 6), we do not need to make claims about the number of β reductions required in β∗, or even that
such a sequence of reductions is likely, only that it is possible. We next demonstrate by construction how
each reaction rule can be implemented. Our construction introduces a new λ term (Li) for each rule.

σ(t) σ(t+ k)

ρ1 ρ2

AA

R⋆

β⋆

Figure 6. Correspondence between λ calculus and Chemical Reaction Net-
works (CRNs). σ(i) are states of a CRN, and ρi are states of a typed AlChemy system.

The transformation A applies to a CRN state σ(t) to produce a new λ expression (Li) for each available
rule (Ri) and makes the initial set of λ expressions ρ1 with these Lis. Further, for each available chemical
species with count k in C, k new λ expressions representing those species (e.g. the Ai, and Bi) are added
to ρ1. The expression Li acts like a catalyst, Li not destroyed by the repeated β-reductions, and all
reductions involving Li consume a set of λ expressions that correspond to species on the left-hand side
of Ri, and produce a set of expressions that correspond to species on the right-hand side of Ri.

SELF ORGANIZATION IN COMPUTATION & CHEMISTRY: RETURN TO ALCHEMY 15

Theorem 1 (Simulation). For all CRNs C = (R,S), there exists a mapping A : C → ρ such that if
σ(t) →⋆

R σ(t+k), then there exists some sequence of collisions β⋆ such that ρ1 = A(σ(t)) →⋆
β A(σ(t+k)) =

ρ2.

Proof. To construct A, we must construct a set ρ of typed λ calculus expressions for every state σ of the
given CRN C. The transformation proceeds as follows: For each chemical symbol x ∈ S, we introduce
the type τx into ρ. For each copy of a symbol x in σ, we add a value vx of type τx to ρ . The number of
vx values equals the count of x in σ. For each rule (reaction) Ri in the CRN, we add a single copy of the
λ term Li to ρ. Li is constructed such that it accepts the variables corresponding to the left-hand side
of Ri as arguments, and contains in its body a list of the variables corresponding to the right-hand side
of Ri as output:

Li = λvA1
: τA1

. λvA2
: τA2

. . . . λvAn
: τAn

. (vB1
(vB2

(vB3
. . . vBm

) . . .)).

We also introduce into ρ arbitrarily many copies of the λ expressions T = λx. λy. x and F = λx. λy. y.
These expressions represent the boolean values true and false respectively.

The proof proceeds by induction on k, the number of reaction steps the CRN required to transform
σ(t) to σ(t+k). Let ρ0 = A(σ(0)). If x ∈ σ(t), then there exists some ρ1 such that ρ0 →⋆

β ρ1 and vx ∈ ρ1.

If there is a sequence of reactions (R⋆) that transforms σ(t) to σ(t + k), then we must show that there
exists a sequence of reactions (β⋆) transforming ρ1 to ρ2.

By induction, we assume that each of vA1 . . . vAn are all in σ(t). Then, an application of the rule Li

to each vAi in succession (discarding all partial products) produces the body of Li. That is,

(Li vA1 . . . vAn) →⋆
β (vB1(vB2(vB3 . . . vBm) . . .)).

In AlChemy, both reactants (in this case Li) are returned to the population, in addition to the product
and a random expression is removed. In our reduction we assume Li is not the random expression chosen
to be removed, thereby maintaining the population of rules in the reaction set.

Once the list (vB1
(vB2

(vB3
. . . vBm

) . . .)) is produced, it remains to decompose the list into a desired
set of outputs. Using the λ expressions T and F , we can successively apply these expressions to the
list such that we produce each vBx

for any chosen x. Note that the application of T produces the first
element of the list, and the application of F produces the remainder of the list, a partial product. Upon
each application, the partial product is returned to the soup to generate the next value. The resulting set
of expressions removes vA1

. . . vAn
from ρ1, and adds vB1

. . . vBm
to ρ1, thereby simulating one reaction

step of the CRN. □

This proof demonstrates that for any set of reaction rules, we can construct a set of λ expressions, which
when composed in a correct order, has the effect of ‘firing’ a set of reaction rules (thereby converting a set
of reactants to a set of products). This means that a carefully selected set of λ expressions can simulate
the transition of any set of reactants under any sequence of reaction rules R between two different points
in time (i.e. simulating the sequence σ(t) →⋆

R σ(t+k)). Alternatively, a proof that uses the computational
equivalence of Turing-complete systems would construct a single lambda expression to represent an entire
CRN, thereby sidestepping the dynamics of chemical reactions as lambda-expression collisions altogether.
Our proof here, does not make claims about whether or not those combinations of λ expressions or β
reductions are likely—the expressions are not random, and the given sequence of β reductions is only one
out of many other possibilities if application and subsequent reduction happen in random order. Despite
these caveats, the proof demonstrates a clear formal correspondence between CRNs and typed λ calculus,
and it illustrates how the space of AlChemy simulations contains state transformations between states of
any CRN.

7. Discussion

7.1. AlChemy as a model of chemistry. Section 6 shows that systems of typed λ calculus can
represent arbitrary sequences of state transitions of CRNs, which establishes a mapping between the
typed λ calculus and CRNs. We do not demonstrate that the λ calculus captures all the richness of
chemistry, including energetic, thermodynamic and structural features; nor do we attempt to replicate
the exact time dependent concentrations. However, it provides an initial step towards such a proof
by demonstrating that every reaction sequence that a CRN might produce can also be produced by a
corresponding set of λ expressions. The proof relies on typed, rather than un-typed, λ calculus, because
with un-typed λ calculus, it would be challenging to prevent undesirable reactions (or unanticipated)
reactions from occurring. The type system provides a shortcut for deciding a priori what is and is not
possible.

16 SELF ORGANIZATION IN COMPUTATION & CHEMISTRY: RETURN TO ALCHEMY

It is interesting that synthetic chemists have to solve this problem manually without invoking a type
system, and instead create a new one. They do this by using pure reagents, and then identifying com-
pounds with limited and specific reactivity which guide their compounds through specific desired reaction
rules, and no others. Thus, CRNs themselves are a refined mathematical abstraction, which can be used
to make predictions about the systems that synthetic chemists (or other biological entities) have made.
They include only pre-specified reactions and rate constants, which can be used to derive the dynamical
properties of the system. Rate constants and reaction rules can reflect energetic, or thermodynamic,
considerations, but they are additional features layered on top of the original CRN model and are not
endogenous to it.

It may be possible to achieve similar features in an AlChemy like system. For example, differential
reaction rates could be incorporated using typed λ calculus by introducing solvent expressions, which can
only bind and unbind to specific reactants, thereby modulating what they can react with. By using a
diversity of different solvent expressions (which need not correspond to different solvents), with different
types, it would be possible to modulate the relative rates of reactions. From a chemical perspective
this would be analogous to solvation effects. Driving the analogy further, it might be possible to draw a
correspondence between reaction progress and the number of β reductions required to reach normal form,
with very long reduction processes implying elaborate molecular transformations. Simulating chemical
systems involves a diversity of different modeling approaches itself, from first-principles quantum chemical
calculations, thermodynamic models, to spatially embedded reaction diffusion systems. It seems unlikely
that a single λ calculus model would subsume all of these approaches elegantly and simultaneously.

7.2. AlChemy as a model of computation. An appealing feature of AlChemy is the emergence
of complex stable organizations. These organizations take different forms, often consist of different
individual expressions, and manifest different relational architectures. All of this emerges from random λ
expressions, which can be understood as random computational functions. A natural question to ask is
whether a bottom-up process like AlChemy can generate anything useful, e.g., perform computations that
a software engineer would find interesting. Similarly, if AlChemy were seeded with functions known to
be useful in other contexts, what would emerge? For example, program synthesis is an active subfield of
computer science, and it would be interesting to ask how an AlChemy-like system would behave if it were
seeded with functions written in a modern functional programming language like Haskell and whether
it might produce (synthesize) useful new functionality. Haskell is a natural choice for such a project,
because it has a large repertoire of existing functions that could be used to populate the soup. A bottom-
up randomly-driven synthesis process for code would be a radical departure from existing practice and
might or might not produce compelling results. Another approach might involve combining AlChemy’s
bottom-up behavior with evolutionary computation, whether in the realm of software improvement or
some other domain. Such an approach would be reminiscent of novelty search [39] and could help address
well-known problems in evolutionary computation that arise with objective fitness functions and lead
to premature convergence. If randomly assembled functions from a simulation like AlChemy can be
searched and their performance measured against data (say, test cases), it could provide a new approach
for many problems and would represent an extension of bio-inspired computing to include inspiration
from chemical systems, particularly the chemical processes that led to life on Earth.

7.3. Origin of Life and Artificial Life. How might one detect evolution via selection in AlChemy?
Our analysis of L2 organizations shows that interactions between L1 organizations are non-trivial, often
generating dynamical properties that do not admit simple analysis. Recently, Assembly theory [40, 17] has
been proposed for studying selection in non-biological systems, particularly in vast combinatorial systems,
such as chemistry. Assembly theory is specific enough to make predictions about empirical systems, but
general enough to be useful as a theoretical framework, and it could be useful for characterizing selection
in AlChemy. By tracking the Assembly Index and the Assembly Space of λ expressions through time
in simulations, one might be able to detect selection and characterize the functional motifs driving that
selection. This requires understanding λ expressions as composite objects which can be decomposed
into elementary building blocks. In the case of molecules, this is relatively straightforward, and doing
so has provided an experimental technique for detecting life and a method for generating novel drug-
like compounds for drug discovery [40, 41]. Mapping the assembly space of expressions in AlChemy
simulations could provide a way to characterize the accessibility of this function space.

Our results using different random expression generators illustrate an important point about the emer-
gence of stable organizations: the richness of the organization depends on the accessibility of the space of
objects. In our simulations the space of possible objects is completely determined by the initial conditions
and those initial conditions are determined by the properties of the random expression generator. When

SELF ORGANIZATION IN COMPUTATION & CHEMISTRY: RETURN TO ALCHEMY 17

we used the permutation generator for initial conditions (Section 5), the simulation produced λ expres-
sions that were too reactive to form stable organizations. Expressions interacted rapidly, those reactions
generated a dense network of other reactions, so the system could explore the entire state-space and
thus collapsed a trivial fixed point. The stability of this fixed point was not an autocatalytic property,
but rather it arose because the expressions it contained were inert. With these initial conditions, the
sequences of reactions between objects had many possible routes to produce an inert object that could not
react further. Meanwhile, original expression generators led to much greater diversity of organizations,
and it was rare for the simulations to end in the trivial fixed point (Figure 2). In this case, although the
expressions could react with each other, the reactions rarely produced inert expressions. This meant that
future reactions were always possible, ensuring the dynamic stability of the organization. These two types
of stability (inert fixed point, and dynamic autocatalytic stability) can be analogized to thermodynamic
stability, and the concept of “dynamic-kinetic stability”[42]. This implies that a simple way to drive
the spontaneous emergence of dynamically stable organizations is by designing systems that inhibit a
direct approach to inert states. Interestingly, the organic chemistry of life on Earth was possible because
organic carbon can “get stuck” between the relatively inert redox states of carbon dioxide and methane
[43, 44, 14]. An interesting question, for both AlChemy and organic chemistry, is the extent to which As-
sembly theory can determine the connectivity of the space of allowable transformations. AlChemy would
represent a useful test case for evaluating whether one can predict the accessible futures of a constructive
system from the Assembly space of its initial conditions alone.

8. Conclusion

Although AlChemy was successful in many ways, the origin of life is an still unresolved question.
Yet, experimental progress towards understanding the chemical origins of life is demonstrating that
simple, unconstrained and nearly random systems can be guided towards diverse, yet constrained, product
spaces [45, 46, 25, 47]. As experimental access to the full richness of these systems improves, the principles
underlying the emergence of life-like phenomena in chemistry will become clearer [26, 48]. New generations
of scientists will seek to harness those principles for design and engineering aspirations, as we witnessed
with the principles underlying biology [49, 50]. Simulations like AlChemy can serve as a computational
testbed for those principles, enabling proof of concept simulations which can guide new experimental
paradigms and suggest targets for analysis to track life-like features of physical systems.

Acknowledgments. CM and DP would like to thank Dr. Doug Moore for his help compiling the
original AlChemy software, and Dr. Harrison B Smith, Veronica Mierzejewski, and Gage Siebert for
their critical comments on an earlier version of this manuscript. SF acknowledges the partial support
of NSF (CCF2211750, CICI 2115075), DARPA (FA8750-19C-0003, N6600120C4020), ARPA-H (SP4701-
23-C-0074), and the Santa Fe Institute.

Author Contributions. All authors contributed to equally to project design, evaluation of results, and
preparation of the manuscript. CM and DP developed the version of AlChemy that runs in modern
computing environments; CM ran simulations; and DP performed theoretical analyses. CM and SF
coordinated the research effort, and SF provided research funding.

References

[1] Walter Fontana, Gunter Wagner, and Leo W Buss. Beyond digital naturalism. Artificial life, 1(1 2):211–227, 1993.
[2] Walter Fontana and Leo W Buss. “the arrival of the fittest”: Toward a theory of biological organization. Bulletin of

Mathematical Biology, 56:1–64, 1994.

[3] Walter Fontana and Leo W Buss. What would be conserved if” the tape were played twice”? Proceedings of the
National Academy of Sciences, 91(2):757–761, 1994.

[4] Peter Dittrich, Jens Ziegler, and Wolfgang Banzhaf. Artificial chemistries—a review. Artificial life, 7(3):225–275, 2001.

[5] Stuart A Kauffman. The origins of order: Self-organization and selection in evolution. Oxford University Press, USA,
1993.

[6] Walter Fontana and Leo W Buss. The barrier of objects: From dynamical systems to bounded organizations. 1996.
[7] Gerhard Quinkert, Ernst Egert, and Christian Griesinger. Aspects of organic chemistry: structure, volume 1. John

Wiley & Sons, 1996.
[8] Lars-Erik Cederman. Endogenizing geopolitical boundaries with agent-based modeling. Proceedings of the National

Academy of Sciences, 99(suppl 3):7296–7303, 2002.
[9] Günter P Wagner and Lee Altenberg. Perspective: complex adaptations and the evolution of evolvability. Evolution,

50(3):967–976, 1996.
[10] Eörs Szathmáry. A classification of replicators and lambda-calculus models of biological organization. Proceedings of

the Royal Society of London. Series B: Biological Sciences, 260(1359):279–286, 1995.

18 SELF ORGANIZATION IN COMPUTATION & CHEMISTRY: RETURN TO ALCHEMY

[11] David C Krakauer, James P Collins, Douglas Erwin, Jessica C Flack, Walter Fontana, Manfred D Laubichler, Sonja J

Prohaska, Geoffrey B West, and Peter F Stadler. The challenges and scope of theoretical biology. Journal of theoretical
biology, 276(1):269–276, 2011.

[12] Software related to the alchemy project. https://sites.santafe.edu/~walter/AlChemy/software.html. Accessed:

January 26, 2024.
[13] Eörs Szathmáry and John Maynard Smith. The major evolutionary transitions. Nature, 374(6519):227–232, 1995.

[14] Eric Smith and Harold J Morowitz. Universality in intermediary metabolism. Proceedings of the National Academy of

Sciences, 101(36):13168–13173, 2004.
[15] Alonzo Church. The calculi of lambda-conversion. Number 6. Princeton University Press, 1985.

[16] Hendrik P Barendregt et al. The lambda calculus, volume 3. North-Holland Amsterdam, 1984.
[17] Abhishek Sharma, Dániel Czégel, Michael Lachmann, Christopher P Kempes, Sara I Walker, and Leroy Cronin.

Assembly theory explains and quantifies selection and evolution. Nature, 622(7982):321–328, 2023.

[18] P Speroni di Fenizio and W Banzhaf. A less abstract artificial chemistry. Artificial Life, 7:49–53, 2000.
[19] Nathaniel Virgo. Open-endedness and thermodynamic reversibility in algebraic chemistry.

[20] Germán Kruszewski and Tomáš Mikolov. Emergence of self-reproducing metabolisms as recursive algorithms in an

artificial chemistry. Artificial Life, pages 1–23, 2022.
[21] Gen Masumoto and Takashi Ikegami. The λ-game system: An approach to a meta-game. In European Conference on

Artificial Life, pages 695–699. Springer, 2001.

[22] Pierre Boutillier, Mutaamba Maasha, Xing Li, Héctor F Medina-Abarca, Jean Krivine, Jérôme Feret, Ioana Cristescu,
Angus G Forbes, and Walter Fontana. The kappa platform for rule-based modeling. Bioinformatics, 34(13):i583–i592,

2018.

[23] https://git.sr.ht/~dglmoore/camllight.
[24] https://github.com/mathis-group/AlChemy. Updated: May 28, 2024.

[25] Andrew J Surman, Marc Rodriguez-Garcia, Yousef M Abul-Haija, Geoffrey JT Cooper, Piotr S Gromski, Rebecca

Turk-MacLeod, Margaret Mullin, Cole Mathis, Sara I Walker, and Leroy Cronin. Environmental control programs
the emergence of distinct functional ensembles from unconstrained chemical reactions. Proceedings of the National

Academy of Sciences, 116(12):5387–5392, 2019.
[26] Leroy Cronin and Sara Imari Walker. Beyond prebiotic chemistry. Science, 352(6290):1174–1175, 2016.

[27] Michael Levandowsky and David Winter. Distance between sets. Nature, 234(5323):34–35, 1971.

[28] Indrajit Maity, Nathaniel Wagner, Rakesh Mukherjee, Dharm Dev, Enrique Peacock-Lopez, Rivka Cohen-Luria, and
Gonen Ashkenasy. A chemically fueled non-enzymatic bistable network. Nature Communications, 10(1):4636, 2019.

[29] Sergey N Semenov, Lewis J Kraft, Alar Ainla, Mengxia Zhao, Mostafa Baghbanzadeh, Victoria E Campbell, Kyungtae

Kang, Jerome M Fox, and George M Whitesides. Autocatalytic, bistable, oscillatory networks of biologically relevant
organic reactions. Nature, 537(7622):656–660, 2016.

[30] Stephen Ellner and Peter Turchin. Chaos in a noisy world: new methods and evidence from time-series analysis. The

American Naturalist, 145(3):343–375, 1995.
[31] Gary D Knott. A numbering system for binary trees. Communications of the ACM, 20(2):113–115, 1977.

[32] Donald E Knuth. The Art of Computer Programming: Fundamental Algorithms, volume 1. Addison-Wesley Profes-

sional, 1997.
[33] Jakob L Andersen, Christoph Flamm, Daniel Merkle, and Peter F Stadler. A software package for chemically inspired

graph transformation. In Graph Transformation: 9th International Conference, ICGT 2016, in Memory of Hartmut
Ehrig, Held as Part of STAF 2016, Vienna, Austria, July 5-6, 2016, Proceedings 9, pages 73–88. Springer, 2016.

[34] Martin Feinberg. Foundations of chemical reaction network theory. 2019.

[35] OoLEN, Silke Asche, Carla Bautista, David Boulesteix, Alexandre Champagne-Ruel, Cole Mathis, Omer Markovitch,
Zhen Peng, Alyssa Adams, Avinash Vicholous Dass, Arnaud Buch, et al. What it takes to solve the origin (s) of life:

An integrated review of techniques. arXiv preprint arXiv:2308.11665, 2023.

[36] Drew Endy and Roger Brent. Modelling cellular behaviour. Nature, 409(6818):391–395, 2001.
[37] Milen Borisov and Svetoslav Markov. The two-step exponential decay reaction network: analysis of the solutions

and relation to epidemiological sir models with logistic and gompertz type infection contact patterns. Journal of

Mathematical Chemistry, 59:1283–1315, 2021.
[38] G Gambino, MC Lombardo, Mml Sammartino, and V Sciacca. Turing pattern formation in the brusselator system

with nonlinear diffusion. Physical Review E, 88(4):042925, 2013.
[39] Joel Lehman and Kenneth O. Stanley. Abandoning objectives: Evolution through the search for novelty alone. Evolu-

tionary Computation, 19(2):189–223, 2011.

[40] Stuart M Marshall, Cole Mathis, Emma Carrick, Graham Keenan, Geoffrey JT Cooper, Heather Graham, Matthew
Craven, Piotr S Gromski, Douglas G Moore, Sara I Walker, et al. Identifying molecules as biosignatures with assembly

theory and mass spectrometry. Nature communications, 12(1):3033, 2021.

[41] Yu Liu, Cole Mathis, Micha l Dariusz Bajczyk, Stuart M Marshall, Liam Wilbraham, and Leroy Cronin. Exploring and
mapping chemical space with molecular assembly trees. Science advances, 7(39):eabj2465, 2021.

[42] Addy Pross. Toward a general theory of evolution: Extending darwinian theory to inanimate matter. Journal of

Systems Chemistry, 2:1–14, 2011.
[43] Everett L Shock and Eric S Boyd. Principles of geobiochemistry. Elements, 11(6):395–401, 2015.

[44] Paul G Falkowski, Tom Fenchel, and Edward F Delong. The microbial engines that drive earth’s biogeochemical cycles.

science, 320(5879):1034–1039, 2008.
[45] William E Robinson, Elena Daines, Peer van Duppen, Thijs de Jong, and Wilhelm TS Huck. Environmental conditions

drive self-organization of reaction pathways in a prebiotic reaction network. Nature Chemistry, 14(6):623–631, 2022.

[46] Kamila B Muchowska, Sreejith J Varma, and Joseph Moran. Nonenzymatic metabolic reactions and life’s origins.
Chemical Reviews, 120(15):7708–7744, 2020.

[47] Silke Asche, Geoffrey JT Cooper, Graham Keenan, Cole Mathis, and Leroy Cronin. A robotic prebiotic chemist probes
long term reactions of complexifying mixtures. Nature Communications, 12(1):3547, 2021.

https://sites.santafe.edu/~walter/AlChemy/software.html
https://git.sr.ht/~dglmoore/camllight
https://github.com/mathis-group/AlChemy

SELF ORGANIZATION IN COMPUTATION & CHEMISTRY: RETURN TO ALCHEMY 19

[48] Michael Jirasek, Abhishek Sharma, Jessica R Bame, Nicola Bell, Stuart M Marshall, Cole Mathis, Alasdair Macleod,

Geoffrey JT Cooper, Marcel Swart, Rosa Mollfulleda, et al. Multimodal techniques for detecting alien life using assembly
theory and spectroscopy. arXiv preprint arXiv:2302.13753, 2023.

[49] Martina Preiner, Silke Asche, Sidney Becker, Holly C Betts, Adrien Boniface, Eloi Camprubi, Kuhan Chandru,

Valentina Erastova, Sriram G Garg, Nozair Khawaja, et al. The future of origin of life research: bridging decades-old
divisions. Life, 10(3):20, 2020.

[50] Risto Miikkulainen and Stephanie Forrest. A biological perspective on evolutionary computation. Nature Machine

Intelligence, 3(1):9–15, 2021.

	1. Introduction
	2. AlChemy
	2.1. The calculus
	2.2. expressions in AlChemy

	3. Prior Work
	3.1. Results from the original AlChemy papers

	4. Experimental Results
	4.1. L0 Organizations
	4.2. L1 Organizations
	4.3. L2 Organizations

	5. Generating Random Expressions
	5.1. Standardization
	5.2. Dynamical Consequences

	6. Expressions Simulate Chemical Reaction Networks (CRNs)
	7. Discussion
	7.1. AlChemy as a model of chemistry
	7.2. AlChemy as a model of computation
	7.3. Origin of Life and Artificial Life

	8. Conclusion
	
	Acknowledgments
	Author Contributions

	References

